5
light colours), a Butterworth low-pass filter26 was applied to the
two sets of data. The resulting lines (bold, Fig. 7) allow the
general trend to be more easily discerned. As can be seen,
following an initial delay as the CH2Cl2-MeCN mixture works its
way through the reaction loop and in-line mixer, there is a
noticeable lowering of the interface level at around 500 sec.
Supporting Information
NMR spectral data and spectra of compounds 3a-c, 5a-m, and
the Python control script are included in the ESI.
References
1
(a) Hessel, V.; Kralisch, D.; Kockmann, N.; Noel, T.; Wang, Q.
ChemSusChem 2013, 6, 746; (b) Brzozowski, M.; O’Brien, M.;
Ley, S. V.; Polyzos, A. Acc. Chem. Res. 2015, 48, 349; (c)
Pastre, J. C.; Browne, D. L.; Ley, S. V. Chem. Soc. Rev. 2013,
42, 8849; (d) Newman, S. G.; Jensen, K. F. Green Chem. 2013,
15, 1456; (e) Knowles, J. P.; Elliott, L. D.; Booker-Milburn, K. I.
Beilstein J. Org. Chem. 2012, 8, 2025; (f) Wiles, C.; Watts, P.
Chem. Commun. 2011, 47, 6512; (g) Webb, D.; Jamison, T. F.
Chem. Sci. 2010, 1, 675; (h) McQuade, D. T.; Seeberger, P. H. J.
Org. Chem. 2013, 78, 6384; (i) Wegner, J.; Ceylan, S.;
Kirschning, A. Adv. Synth. Catal. 2012, 354, 17; (j) Yoshida, J. I.
Chem. Rec. 2010, 10, 332; (k) Kobayashi, J.; Mori, Y.; Okamoto,
K.; Akiyama, R.; Ueno, M.; Kitamori, T.; Kobayashi, S. Science
2004, 304, 1305; (l) Gutmann, B.; Cantillo, D.; Kappe, C. O.
Angew. Chem. Int. Ed. 2015, 54, 6688; (m) Ley, S. V. Chem.
Rec. 2012, 12, 378; (n) Hartman, R. L.; McMullen, J. P.; Jensen,
K. E. Angew. Chem. Int. Ed. 2011, 50, 7502.
2
(a) Mueller, S. T. R.; Wirth, T. ChemSusChem 2015, 8, 245; (b)
Mastronardi, F.; Gutmann, B.; Kappe, C. O. Org. Lett. 2013, 15,
5590; (c) Dallinger, D.; Pinho, V. D.; Gutmann, B.; Kappe, C. O.
J. Org. Chem. 2016, 81, 5814; (d) Fukuyama, T.; Totoki, T.;
Ryu, I. Green Chem. 2014, 16, 2042; (e) Brancour, C.;
Fukuyama, T.; Mukai, Y.; Skrydstrup, T.; Ryu, I. Org. Lett.
2013, 15, 2794; (f) Gross, U.; Koos, P.; O'Brien, M.; Polyzos,
A.; Ley, S. V. Eur. J. Org. Chem. 2014, 6418; (g) Koos, P.;
Gross, U.; Polyzos, A.; O'Brien, M.; Baxendale, I.; Ley, S. V.
Org. Biomol. Chem. 2011, 9, 6903; (h) Maurya, R. A.; Park, C.
P.; Lee, J. H.; Kim, D. P. Angew. Chem. Int. Ed. 2011, 50, 5952.
(a) Hook, B. D. A.; Dohle, W.; Hirst, P. R.; Pickworth, M.;
Berry, M. B.; Booker-Milburn, K. I. J. Org. Chem. 2005, 70,
7558; (b) O'Brien, M.; Baxendale, I. R.; Ley, S. V. Org. Lett.
2010, 12, 1596; (c) O'Brien, M.; Taylor, N.; Polyzos, A.;
Baxendale, I. R.; Ley, S. V. Chem. Sci. 2011, 2, 1250; (d)
Mansur, E. A.; Ye, M.; Wang, Y.; Dai, Y. Chin. J. Chem. Eng.
2008, 16, 503; (e) Wada, Y.; Schmidt, M. A.; Jensen, K. F. Ind.
Eng. Chem. Res. 2006, 45, 8036; (f) Yang, L.; Jensen, K. F. Org.
Proc. Res. Dev. 2013, 17, 927; (g) Park, C. P.; Kim, D. P. J. Am.
Chem. Soc. 2010, 132, 10102.
Ley, S. V.; Baxendale, I. R.; Bream, R. N.; Jackson, P. S.; Leach,
A. G.; Longbottom, D. A.; Nesi, M.; Scott, J. S.; Storer, R. I.;
Taylor, S. J. J. Chem. Soc. - Perkin Trans. 1 2000, 3815.
O'Brien, M.; Denton, R.; Ley, S. V. Synthesis 2011, 1157.
E.g. at time of writing: Sigma-Aldrich: polymer-bound
thiosulfate (589977-25G) costs £ 6.43/mmol. Regular solid
sodium thiosulfate (217263-250G-D) costs £ 0.02/mmol. .
Lange, H.; Carter, C. F.; Hopkin, M. D.; Burke, A.; Goode, J. G.;
Baxendale, I. R.; Ley, S. V. Chem. Sci. 2011, 2, 765.
(a) Kralj, J. G.; Sahoo, H. R.; Jensen, K. F. Lab Chip 2007, 7,
256; (b) Castell, O. K.; Allender, C. J.; Barrow, D. A. Lab Chip
2009, 9, 388; (c) Atallah, R. H.; Ruzicka, J.; Christian, G. D.
Anal. Chem. 1987, 59, 2909; (d) Kolehmainen, E.; Turunen, I.
Chem. Eng. Process. 2007, 46, 834; (e) Adamo, A.; Heider, P.
L.; Weeranoppanant, N.; Jensen, K. F. Ind. Eng. Chem. Res.
2013, 52, 10802.
(a) Hornung, C. H.; Mackley, M. R.; Baxendale, I. R.; Ley, S. V.
Org. Proc. Res. Dev. 2007, 11, 399; (b) Sahoo, H. R.; Kralj, J.
G.; Jensen, K. F. Angew. Chem. Int. Ed. 2007, 46, 5704; (c)
Delville, M. M. E.; van Hest, J. C. M.; Rutjes, F. P. J. T.
Beilstein J. Org. Chem. 2013, 9, 1813; (d) Maurya, R. A.; Min,
K. I.; Kim, D. P. Green Chem. 2014, 16, 116; (e) Delville, M. M.
E.; Koch, K.; van Hest, J. C. M.; Rutjes, F. P. J. T. Org. Biomol.
Chem. 2015, 13, 1634; (f) Varas, A. C.; Noël, T.; Wang, Q.;
Hessel, V. ChemSusChem 2012, 5, 1703.
Figure 7. Data for the position of the interfacial float (red) and the flow rate
of the aqueous-out pump (blue). Raw data is shown in light colours while the
smoothed data (Butterworth low pass filter) is shown as a dark line.
This is consistent with an increase in the aqueous phase
volumetric flow rate and a corresponding decrease in the organic
phase volumetric flow rate, brought about by extraction of MeCN
between the two phases. This was confirmed by 1H NMR
analysis of the organic outlet stream, which had the same
CH2Cl2-MeCN ratio as in the batch extraction experiment shown
in Figure 6. The perturbation in the interface level is
accompanied by a corresponding increase in the aqueous-out
flow rate as the system tries to compensate. This continues for
some time until the position of the interface and the aqueous-out
flow rate begin to return to their original values. Clearly, the
results shown in Figure 7 reinforce the need for dynamic
positional control in order to keep the liquid-liquid interface
within the desired bounds. The ability of the system to respond to
perturbations becomes more critical when low organic phase
volumes are used in the separator as there is less ‘buffer’ volume
between the interface and the organic outlet. This is an important
consideration from a process standpoint as the use of a low
organic phase volume is desirable to minimise unwanted
dispersion effects.27 In addition, the ability to keep the organic
phase volume within desired bounds provides control over such
dispersion, leading to time and/or scale invariance.
3
4
5
6
7
8
Conclusions
The computer-vision controlled liquid-liquid extraction system
used in this work enabled the automated continuous-flow
iodination of a series of enaminones using N-iodosuccinimide as
the halogen source. The system efficiently extracted all of the
succinimide by-products from the product stream, affording
analytically pure compounds in high yield. The system was able
to cope well with significant colouration of the product stream. It
also responded well to the perturbation in the relative flow rates
of the two phases brought about by the interfacial transfer of
MeCN. We are currently investigating the application of this
system to a wide range of other reaction types. We are also
continuing our investigations into the perturbation of interface
position due to the extraction of miscible solvents into the
aqueous phase and will report our findings in due course.
9