S. R. Baddam et al. / Tetrahedron Letters 54 (2013) 1661–1663
1663
8. Cheung, M.; Boloor, A.; Stafford, J. A. J. Org. Chem. 2003, 68, 4093.
9. Luo, G.; Chen, L.; Dubowchik, G. J. Org. Chem. 2006, 71, 5392.
10. Catalan, J.; del Valle, J. C.; Claramunt, R. M.; Boyer, G.; Laynez, J.; Gomez, J.;
Jimenez, P.; Tomas, F.; Elguero, J. J. Phys. Chem. 1994, 98, 10606.
11. (a) Morel, S.; Boyer, G.; Coullet, F.; Galy, J.-P. Synth. Commun. 1996, 26, 2443;
(b) Boyer, G.; Galy, J. P.; Barbe, J. Heterocycles 1995, 41, 487.
methodology can be applied to one of the key intermediates of Paz-
opanib hydrochloride and various substituted indozole ring sys-
tems of pharmaceutical significance.
Acknowledgements
12. (a) Auwers, K. V.; Schwegler, K. Chem. Ber. 1920, 53, 1211; (b) Witt, O. N.;
Nolting, E.; Grandmougin, E. Chem. Ber. 1890, 23, 3635.
13. (a) Jaffari, G. A.; Nunn, A. J. J. Chem. Soc., Perkin Trans. 1 1973, 2371; (b) Bernard,
M. K.; Kujawski, J.; Skierska, U.; Gzella, A. K.; Jankowski, W. ARKIVOC 2012, 8,
1–18.
14. Stahl, I. In Encyclopedia of Reagents for Organic Synthesis; Paquette, L. A., Ed.;
John Wiley & Sons: Chichester, 1995; Vol. 7, pp 5213–5216.
We thank the management of IPDO-API, Dr. Reddy’s laborato-
ries Ltd. for supporting this work. Support from the colleagues at
analytical research and development team is highly appreciated.
DRL IP Communication number: 00356.
15. Regiochemistry of the products was determined by observing a correlation
between H-1 and H-3 from the 1D-NOE- NMR spectroscopic experiments.
Supplementary data
Supplementary data associated with this article can be found, in
H
4
3
H
5
6
N
R
1
2
N
1
7
References and notes
5
(a-k)
1. Cerecetto, H.; Gerpe, A.; Gonzalez, M.; Aran, V. J.; de Ocarizi, C. O. Mini-Rev.
Med. Chem. 2005, 5, 869–878.
2. Fletcher, S. R.; Mclver, E.; Lewis, S.; Burkamp, F.; Leach, C.; Mason, G.; Boyce, S.;
Morrison, D.; Richards, G.; Sutton, K.; Jones, A. B. Bioorg. Med. Chem. Lett. 2006,
16, 2872.
3. Wang, H.; Han, H.; Von Hoff, D. D. Cancer Res. 2006, 66, 9722.
4. Kawanishi, N.; Sugimoto, T.; Shibata, J.; Nakamura, K.; Masutani, K.; Ikuta, M.;
Hirai, H. Bioorg. Med. Chem. Lett. 2006, 16, 5122.
5. Abouzid, K. A. M.; El-Abhar, H. S. Arch. Pharmacol. Res. 2003, 26, 1.
6. Silvestrini, B.; Cheng, C. Y. US Patent Appl. 99-304042, 1999.
7. (a) Halland, N.; Nazare, M.; R’kyek, O.; Alonso, J.; Urmann, M.; Lindenschmidt,
A. Angew. Chem., Int. Ed. 2009, 48, 6879–6882; (b) Vina, D.; Olmo, E. D.; Lopez-
Perez, J. L.; Feliciano, A. S. Org. Lett. 2007, 9, 525–528; (c) Stadlbauer, W.; Camp,
N. In Science of Synthesis: Houben–Weyl Methods of Molecular Transformations;
Bellus, D., Ley, S. V., Noyori, R., Regitz, M., Schaumann, E., Shinkai, E., Thomas, E.
J., Trost, B. M., Reider, P. J., Eds.; Thieme: Stuttgart, 2002; Vol. 12, p 227.
General procedure for the synthesis of 2-methylsubstituted 2H-indazoles: Preparation of
2-methyl-6-nitro-2H-indazole (5d). To a stirred mixture of 6-nitro-1H-indazole (1.0 g,
0.0061 mmol) in dichloromethane (25.0 mL) was added trifluoromethanesulfonic
acid (0.54 mL, 0.0061 mmol), stirred for 5–10 min at 25–35 °C. To this mixture
was added methyl 2,2,2,-trichlroacetimidate (2.69 g, 0.015 mmol) at room tempera-
ture. The reaction mixture was stirred at room temperature for 16–18 h under N2.
After reaction completion, chilled saturated NaHCO3 solution was added. The aque-
ous and organic phases were separated. Aqueous phase was extracted with dichlo-
romethane 10 mL. Combined organic layers were washed with DM water
(2 Â 10 mL). Organic layer was dried over anhydrous Na2SO4, filtered, and evapo-
rated completely under vacuum to obtain 2-methyl-6-nitro-2H-indazole (1.03 g,
95.0%) as a yellow solid. 1H NMR (400 MHz, CDCl3) d 8.683 (s, 1H), 8.03 (s, 1H),
7.91 (d, 1H), 7.89 (d, 1H), 4.31 (s, 3H); 13C NMR (400 MHz, CDCl3) 146.93, 146.46,
124.52, 121.24, 115.70, 115.27, 41.06; MS (+ve ES) 178 (M+H).