1580
Organometallics 2003, 22, 1580-1581
A Ca tion ic 1-(2-Meth ylp yr id in e)P h osp h ole Cym en e
Ru th en iu m Ch lor id e Com p lex a s a n Efficien t Ca ta lyst in
th e Tr a n sfer Hyd r ogen a tion of Keton es
Claire Thoumazet, Mohand Melaimi, Louis Ricard, Franc¸ois Mathey,* and
Pascal Le Floch*
Laboratoire “He´teroe´le´ments et Coordination”, UMR CNRS 7653, De´partement de Chimie,
Ecole Polytechnique, 91128 Palaiseau Cedex, France
Received J anuary 28, 2003
Sch em e 1
Summary: Reaction of 2,5-diphenylphospholide anion
with 2-chloromethylpyridine affords the 1-(2-methylpy-
ridine)phosphole ligand. The corresponding cationic Ru-
(cymene)Cl chelate complex catalyzes the hydrogen trans-
fer process of ketones with very high TON and TOF
numbers.
Due to the presence of two very different binding sites,
mixed P, N-chelate ligands possess unusual electronic
properties that make them very attractive in both
coordination chemistry and catalysis.1 These ligands,
which usually show a pronounced hemilabile character,
have found interesting applications in some catalytic
processes of recognized importance such as reduction,2
allylic alkylation,3 C-C coupling (Heck reaction),4 and
olefin/CO copolymerization.5 As part of a large research
program aimed at incorporating diverse phosphorus
heterocycles in mixed heteroditopic chelates and poly-
dentate ligands,6 we decided to explore the synthesis of
1-phospholyl derivatives of 2-methylpyridine. Herein,
we report on the synthesis, the X-ray crystal structure,
and the catalytic activity in the transfer hydrogenation
of ketones of the cationic cymene RuCl complex of one
of these new ligands.
Among different possible candidates for the phosphole
subunit, we selected the 2,5-diphenylphospholyl ligand,
whose P-functional derivatives show a very good stabil-
ity toward air oxidation. Furthermore, the precursor of
these P-functional compounds, the 1,2,5-triphenylphos-
phole, is cheap and easily available on a multigram scale
from the simple reaction of dichlorophenylphosphine
with 1,4-diphenyl-1,3-butadiene.7 Synthesis of the 1-(2-
methylpyridine)-2,5-diphenylphosphole ligand 3 was
carried out following a classical approach that involves
the reaction of the 2,5-diphenylphospholide anion 2 with
2-chloromethylpyridine in THF at room temperature.
Interestingly, we found that when the easily available
1,1′-bis(2,5-diphenylphosphole)8 1 is used as starting
precursor of anion 2, no chromatographic separation is
needed to isolate 3. Following this procedure, ligand 3
was obtained in 80% yield as an air-stable yellow solid
which can be stored without special precautions. The
formulation of 3 was conventionally established by NMR
and mass spectroscopies and elemental analysis (Scheme
1).
As a preliminary study to explore the coordination
behavior of 3, we deliberately focused our work on the
synthesis of chelate-based (η6-arene)ruthenium com-
plexes. Reaction of 3 with half an equivalent of [Ru(η6-
C10H14)Cl2] did not produce the cationic chelate complex
but the monodentate complex 4, which results from the
simple cleavage of the dimer (eq 1). Additionnal heating
in different solvents did not allow the displacement of
the chloride ligand. Though 4 was fully characterized
(1) See for example: (a) Fritz, H. P.; Gordon, I. R.; Schwarzhans,
K. E.; Venanzi, L. M. J . Chem. Soc. 1965, 5210. (b) Bader, A.; Lindner,
E. Coord. Chem. Rev. 1991, 108, 27. (c) Newkome, G. R. Chem. Rev.
1993, 93, 2067. (d) Rulke, R. E.; Kaasjager, R. E.; Wehman, P.;
Elsevier: C. J . van Leuwen, P. W. N. M.; Vrieze, K.; Fraanje, J .;
Goubitz, K.; Spek, A. L. Organometallics 1996, 15, 3022. (e) Francio,
G.; Scopelliti, R.; Arena, C. G. Bruno, G.; Drommi, D.; Faraone, F.
Organometallics 1998, 17, 338. (f) Crociani, B.; Antonaroli, S.; Bandoli,
G.; Canovese, L.; Visentin, F.; Uguagliati, P. Organometallics 1999,
18, 1137. (g) Espinet, P.; Soulantica, K. Coord. Chem. Rev. 1999, 193-
195, 499. (h) Ittel, S. D.; J ohnson, L. K.; Brookhart, M. Chem. Rev.
2000, 100, 1169. (i) Braunstein, P.; Naud, F. Angew. Chem., Int. Ed.
2001, 40, 680.
(2) (a) Yang, H.; Gao, H.; Angelici, R. Organometallics 2000, 19, 622.
(b) Braunstein, P.; Naud, F.; Rettig, S. New J . Chem. 2001, 25, 32.
(3) (a) Suzuki, Y.; Ogata, Y.; Hiroi, K. Tetrahedron: Asymmetry
1999, 10, 1219. (b) Helchem, G.; Pfaltz, A. Acc. Chem. Res. 2000, 33,
336. (c) Farrell, A.; Goddard, R.; Guiry, P. J . Org. Chem. 2002, 67,
4209.
(4) Deng, W.-P.; Hou, X.-L.; Daia, L.-X.; Dong, X.-W. Chem. Com-
mun. 2000, 1483.
(5) (a) Braunstein, P.; Fryzuck, M. D.; Le Dall, M.; Naud, F.; Rettig,
S.; Speiser, F. J . Chem. Soc., Dalton Trans. 2000, 1067. (b) Chen, Y.-
C.; Chen, C.-L.; Chen, J .-T.; Liu, S.-T. Organometallics 2000, 20, 1285.
(c) Reddy, K. R.; Surekha, K.; Lee, G.-H.; Peng, S.-M.; Liu, S.-T.
Organometallics 2000, 19, 2637. (d) Reddy, K. R.; Surekha, K.; Lee,
G.-H.; Peng, S.-M.; Liu, S.-T. Organometallics 2001, 20, 1292. (e) Aeby,
A.; Gsponer, A.; Consiglio, G. J . Am. Chem. Soc. 1998, 120, 11000. (f)
Sauthier, M.; Leca, F.; Toupet, L.; Re´au, R. Organometallics 2002, 21,
1591.
(6) (a) Bre`que, A.; Santini, C.; Mathey, F.; Fischer, J .; Mitschler, A.
Inorg. Chem. 1984, 23, 3463. (b) Lelie`vre, S.; Mercier, F.; Mathey, F.
J . Org. Chem. 1996, 61, 3531. (c) Holand, S.; Maigrot, N.; Charrier, C.
Mathey, F. Organometallics 1998, 17, 2996. (d) Lelie`vre, S.; Mercier,
F.; Ricard, L.; Mathey, Tetrahedron Asymmetry 2000, 11, 4601. (e)
Sava, X.; Marinetti, A.; Ricard, L.; Mathey, F. Eur. J . Inorg. Chem.
2002, 1657. (f) Doux, M.; Bouet, M.; Me´zailles, N.; Ricard, L.; Le Floch,
P. Organometallics 2002, 21, 2785. (g) Doux, M.; Melaimi, M.;
Me´zailles, N.; Ricard, L.; Le Floch, P. Chem. Commun. 2002, 1566.
(7) Campbell, I. G.; Cookson, R. C.; Hocking, M. B.; Hugues, N. A.
J . Chem. Soc. 1965, 2184.
(8) Charrier, C.; Bonnard, H. Mathey, F. J . Organomet. Chem. 1982,
231, 361.
10.1021/om030065l CCC: $25.00 © 2003 American Chemical Society
Publication on Web 03/21/2003