C O M M U N I C A T I O N S
Scheme 1. Palladium-Catalyzed Synthesis of Tricyclic
Heterocycles 2a,b
reductive conditions (LiAlH4, then HCl) and furnished the free
diamine in 95% yield from nondeuterated 4. In contrast to earlier
work with preformed imidoosmium oxidants10c,11 or the stoichio-
metric palladium10a,b and thallium9a diaminations, the intramolecular
reactions described herein afford diamines with predictable dif-
ferentiation of the nitrogen substituents.
In summary, we have described intramolecular diamination
reactions of alkenes, which afford a conceptually novel synthesis
of cyclic ureas and diamines, respectively. This process establishes
the principle of oxidative intramolecular diamination reactions,
which are truly catalytic in metal.
Acknowledgment. Financial support from the Fonds der
Chemischen Industrie and the German-Israeli Foundation to K.M.
is gratefully acknowledged.
Supporting Information Available: Experimental procedures,
X-ray data for 2a, and spectral characterization (1H and 13C NMR) for
reaction products. This material is available free of charge via the
Scheme 2. Mechanistic Proposal
References
(1) Modern Amination Reactions; Ricci, A., Ed.; Wiley-VCH: Weinheim,
Germany, 2000.
(2) (a) Hong, S.; Marks, T. J. Acc. Chem. Res. 2004, 37, 673. (b) Hultzsch,
K. C. AdV. Synth. Catal. 2005, 347, 367.
(3) (a) Donohoe, T. J.; Johnson, P. D.; Cowley, A.; Keenan, M. J. Am. Chem.
Soc. 2002, 124, 12934. (b) Donohoe, T. J.; Johnson, P. D.; Pye, R. J.
Org. Biomol. Chem. 2003, 1, 2025. (c) Donohoe, T. J.; Johnson, P. D.;
Pye, R. J.; Keenan, M. Org. Lett. 2004, 6, 2583. (d) Kenworthy, M. N.;
Taylor, R. J. K. Org. Biomol. Chem. 2005, 3, 603.
(4) Alexanian, E. J.; Lee, C.; So¨rensen, E. J. J. Am. Chem. Soc. 2005, 127,
7690.
piperidine formation required a catalyst loading of 25 mol %, and
a beneficial effect of base was not observed (Procedure B, entries
5-7). For all reactions, the overall conformation of the products
was established from their respective NMR spectra and MS data.14
Formation of a quaternary stereocenter was accomplished with the
expected complete selectivity and in high yield (entry 9).15
Tricyclic heterocycles are accessible from this reaction, as well.
Here, urea 1 underwent clean diamination to yield two products,
2a and 2b, in the absence of base (Scheme 1). The latter one is
believed to derive from regioselective additional Pd-catalyzed
oxidation at the arene ring.16 Applying the conditions of Procedure
A, compound 2a is obtained as sole product (78%). It was
characterized by X-ray analysis, which confirmed the expected
concave surface of the tricyclic core.
To probe the underlying mechanism, diamination of selectively
deuterated 3 was investigated, and the obtained diastereomerically
pure product 4 showed selective deuterium incorporation. The
observed coupling constant of 3J ) 8.6 Hz between the remaining
two hydrogen atoms at the urea core confirms a trans-arrangement
of these two atoms and proves that the E-stereochemistry of the
alkene was transferred to the product. The simplest mechanistic
scenario for such a result is in agreement with our initial working
hypothesis and should consist of a trans-selective amino-palladation
to yield intermediate 5. Finally, Pd oxidation16 and concomitant
second amination forms the cyclic urea core and displaces the
palladium. This final step is obviously kinetically preferred over
potentially competing â-hydride elimination.8,17 The presence of
oxidant is required, as a control reaction stoichiometric in metal
was reversible, leading to recovered starting material and did not
give any detectable diamination product without PhI(OAc)2. Due
to this result, an alternative Pd(II)/Pd(0) cycle result is less probable.
Liberation of the respective diamine core was accomplished under
(5) (a) Welter, C.; Koch, O.; Lipowsky, G.; Helmchen, G. Chem. Commun.
2004, 896. (b) Welter, C.; Dahnz, A.; Brunner, B.; Streiff, S.; Du¨bon, P.;
Helmchen, G. Org. Lett. 2005, 7, 1239. (c) For an allylic amination as
the final step in catalytic diamination of 1,3-dienes, see: Bar, G. L J.;
Lloyd-Jones, G. C.; Booker-Milburn, K. I. J. Am. Chem. Soc. 2005, 127,
7308.
(6) (a) Dauban, P.; Sanie´re, L.; Tarrade, A.; Dodd, R. H. J. Am. Chem. Soc.
2001, 123, 7707. (b) Duran, F.; Leman, L.; Ghini, A.; Burton, G.; Dauban,
P.; Dodd, R. H. Org. Lett. 2002, 4, 2481.
(7) (a) Espino, C. G.; Du Bois, J. Angew. Chem., Int. Ed. 2001, 40, 598. (b)
Espino, C. G.; Wehn, P. M.; Chow, J.; Du Bois, J. J. Am. Chem. Soc.
2001, 123, 6935. (c) Fleming, J. J.; Fiori, K. W.; Du Bois, J. J. Am. Chem.
Soc. 2003, 125, 2028. (d) Fiori, K. W.; Fleming, J. J.; Du Bois, J. Angew.
Chem., Int. Ed. 2004, 43, 4349. (e) Espino, C. G.; Fiori, K. W.; Kim, M.;
Du Bois, J. J. Am. Chem. Soc. 2004, 126, 15378. (f) Liang, J. L.; Yuan,
S. X.; Huang, J.-S.; Yu, W.-Y.; Che, C.-M. Angew. Chem., Int. Ed. 2002,
41, 3465.
(8) Fix, S. R.; Brice, J. L.; Stahl, S. S. Angew. Chem., Int. Ed. 2002, 41, 164.
(9) (a) Go´mez Aranda, V.; Barluenga, J.; Aznar, F. Synthesis 1974, 504. (b)
Barluenga, J.; Alonso-Cires, L.; Asensio, G. Synthesis 1979, 962.
(10) (a) Ba¨ckvall, J. E. Tetrahedron Lett. 1977, 163. (b) Ba¨ckvall, J. E.
Tetrahedron Lett. 1975, 2225. (c) Chong, A. O.; Oshima, K.; Sharpless,
K. B. J. Am. Chem. Soc. 1977, 99, 3420. (d) Anhaus, J. T.; Kee, T. P.;
Schofield, M.; Schrock, R. R. J. Am. Chem. Soc. 1990, 112, 1642. (e)
Zabawa, T. P.; Kasi, D.; Chemler, S. R. J. Am. Chem. Soc. 2005, 127,
11250.
(11) (a) Mun˜iz, K.; Iesato, A.; Nieger, M. Chem.sEur. J. 2003, 9, 5581. (b)
Mun˜iz, K.; Nieger, M.; Mansikkama¨ki, H. Angew. Chem., Int. Ed. 2003,
42, 5958. (c) Mun˜iz, K.; Nieger, M. Chem. Commun. 2005, 2729.
(12) Mun˜iz, K. Habilitation Thesis, Universita¨t Bonn, 2004.
(13) For a diamination relying on solvent incorporation and subsequent Ritter-
type cyclization to yield imidazolidines, see: (a) Li, G.; Wei, H.-X.; Kim,
S. H.; Carducci, M. Angew. Chem., Int. Ed. 2001, 40, 4277. (b) Wei,
H.-X.; Kim, S. H.; Li, G. J. Org. Chem. 2002, 67, 4777.
(14) See Supporting Information for full details.
(15) Even under conditions B, internal olefins react only at very low rate.
Current work is directed to understand and overcome these limitations.
(16) (a) Yoneyama, T.; Crabtree, R. H. J. Mol. Catal. A 1996, 108, 96. (b)
Dick, A. R.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126,
2300. (c) Desai, L. V.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc.
2004, 126, 9542.
(17) (a) Timokhin, V. I.; Anastasi, N. R.; Stahl, S. S. J. Am. Chem. Soc. 2003,
125, 12996. (b) Brice, J. L.; Harang, J. E. Timokhin, V. I.; Anastasi, N.
R.; Stahl, S. S. J. Am. Chem. Soc. 2005, 127, 2868.
JA055190Y
9
J. AM. CHEM. SOC. VOL. 127, NO. 42, 2005 14587