2106
M. Warwel, W.-D. Fessner
LETTER
(10) Hung, R. R.; Straub, J. A.; Whitesides, G. M. J. Org. Chem.
1991, 56, 3849.
References
(1) (a) Angata, T.; Varki, A. Chem. Rev. 2002, 102, 439.
(b) Roy, R.; Laferrière, C. A.; Pon, R. A. Methods Enzymol.
1994, 247, 351. (c) Corfield, A. P.; Schauer, R. In Sialic
Acids, Chemistry, Metabolism and Function; Schauer, R.,
Ed.; Springer Verlag: New York, 1982, 5. (d) Vliegenthart,
J. F. G.; Mamerling, J. P. In Sialic Acids, Chemistry,
Metabolism and Function; Schauer, R., Ed.; Springer
Verlag: New York, 1982, 59.
(2) (a) Vimr, E.; Lichtensteiger, C. Trends Microbiol. 2002, 10,
254. (b) Kiefel, M. J.; von Itzstein, M. Chem. Rev. 2002,
102, 471. (c) Jaeken, J.; Matthijs, G. Annu. Rev. Genomics
Hum. Genet. 2001, 2, 129. (d) Schauer, R. Glycoconjugate
J. 2000, 17, 485. (e) Crocker, P. R.; Varki, A. Trends
Immunol. 2001, 22, 337. (f) Sillanaukee, P.; Ponnio, M.;
Jaaskelainen, I. P. Eur. J. Clin. Invest. 1999, 29, 413.
(g) Rosenberg, S. Biology of the Sialic Acids; Plenum Press:
New York, 1995.
(3) (a) For a review, see: Fessner, W.-D.; Walter, C. Top. Curr.
Chem. 1996, 184, 97. (b) Augé, C.; David, S.; Gautheron,
C.; Veyrières, A. Tetrahedron Lett. 1985, 26, 2439.
(c) Simon, E. S.; Bednarski, M. D.; Whitesides, G. M. J. Am.
Chem. Soc. 1988, 110, 7159. (d) Schrell, A.; Whitesides, G.
M. Liebigs Ann. Chem. 1990, 1111. (e) Lin, C.-H.; Sugai,
T.; Halcomb, R. L.; Ichikawa, Y.; Wong, C. H. J. Am. Chem.
Soc. 1992, 114, 10138. (f) Mahmoudian, M.; Noble, D.;
Drake, C. S.; Middleton, R. F.; Montgomery, D. S.; Piercey,
J. E.; Ramlakhan, D.; Todd, M.; Dawson, M. J. Enzyme
Microb. Technol. 1997, 20, 393.
(4) (a) For a review, see: Li, C.-J.; Chan, T.-H. Tetrahedron
1999, 55, 11149. (b) Li, C.-J.; Chan, T.-H. J. Chem. Soc.,
Chem. Commun. 1992, 747. (c) Kim, E.; Gordon, D. M.;
Schmid, W.; Whitesides, G. M. J. Org. Chem. 1993, 58,
5500. (d) Gordon, D. M.; Whitesides, G. M. J. Org. Chem.
1993, 58, 7937. (e) Li, C. J.; Lee, M. C.; Wei, Z. Y.; Chan,
T. H. Can. J. Chem. 1994, 72, 1181. (f) Chan, T.-H.; Lee,
M.-C. J. Org. Chem. 1995, 60, 4228. (g) Choi, S.-K.; Lee,
S.; Whitesides, G. M. J. Org. Chem. 1996, 61, 8739.
(h) Banwell, M. G.; Savi, C. D.; Watson, K. Chem. Commun.
1998, 1189.
(11) Waldmann, H.; Sebastian, D. Chem. Rev. 1994, 94, 911.
(12) Typical reaction conditions for the indium-mediated
allylation: To a solution of the aminoaldehyde (1.0 mmol)
and ethyl 2-(bromomethyl)-acrylate16 (386 mg; 2.0 mmol) in
a mixture made from 12.5 mL EtOH and 2.5 mL 0.1 M HCl
was added indium powder (230 mg; 2.0 mmol) at r.t. The
suspension was vigorously stirred until TLC indicated
complete conversion of the starting material, and was then
filtered through a pad of Celite. Water was added (20 mL),
and the resulting mixture was concentrated to 20 mL under
vacuum followed by extraction with EtOAc (3 × 30 mL).
The combined organic layers were washed with brine
(1 × 20 mL) and water (1 × 20 mL), dried over Na2SO4,
filtered, and concentrated under vacuum. Without further
purification, the remaining crude colorless solid was taken
up in MeOH and treated with ozone at –78 °C. Ozonide
reduction (Me2S, r.t.) followed by flash chromatography
provided compounds 9a–d as colorless syrups, which were
hydrolyzed by treatment with 2 equivalents of aq LiOH to
furnish stereoisomerically pure truncated sialic acid
derivatives 10a–d.
Spectroscopic data: 10a: 1H NMR (300 MHz, D2O):
δ = 3.82 (m, 1 H, 4-H), 3.67 (m, 2 H, 6-H), 3.53 (m, 1 H,
5-H), 2.15 (dd, 1 H, J3eq,3ax = 13.1 Hz, J3eq, 4 = 4.9 Hz, 3eq-H),
1.90 (s, 3 H, CH3), 1.69 (dd, 1 H, J3ax,3eq = 13.1 Hz,
J3ax,4 = 11.2 Hz, 3ax-H); 13C NMR (75 MHz, D2O):
= 177.23 (C-1), 175.07 (C=O), 97.75 (C-2), 68.27 (C-4),
63.67 (C-6), 54.36 (C-5), 41.33 (C-3), 24.40 (CH3); ESI-MS:
m/z = 218 ([M–H]-, 100). 10b: 1H NMR (300 MHz, D2O):
δ = 7.26–7.38 (m, 5 H, Har), 3.58 (s, 2 H, CH2), 3.48–3.96
(m, 4 H, 4-,5-,6-H), 2.14 (dd, 1 H, J3eq,3ax = 13.0 Hz,
J
3eq,4 = 4.8 Hz, 3eq-H), 1.88 (dd, 1 H, J3ax,3eq = 13.0 Hz,
J3ax,4 = 11.1 Hz, 3ax-H); 13C NMR (75 MHz, D2O):
= 178.27 (C=O), 177.98 (C-1), 138.07 (Ci), 131.64,
131.29, 129.63 (CHo,m,p), 99.24 (C-2), 69.26 (C-4), 64.19 (C-
6), 55.42 (C-5), 45.28 (CH2), 42.50 (C-3); ESI-MS: m/
z = 318 ([M + Na]+, 100), 300(40). 10c: 1H NMR (300 MHz,
D2O): δ = 3.65–3.93 (5 H, m, 4-,5-,6-,7-H), 2.32 (1 H, dd,
J
3eq,3ax = 13.0 Hz, J3eq,4 = 5.0 Hz, 3eq-H), 2.04 (3 H, s, CH3),
1.87 (1 H, dd, J3ax,3eq = 13.0 Hz, J3ax,4 = 11.6 Hz, 3ax-H); 13
C
(5) (a) Suttajit, M.; Urban, C.; McLean, R. L. J. Biol. Chem.
1971, 246, 810. (b) Kim, M.-J.; Hennen, W. J.; Sweers, H.
M.; Wong, C.-H. J. Am. Chem. Soc. 1988, 110, 6481.
(c) Fitz, W.; Schwark, J. R.; Wong, C.-H. J. Org. Chem.
1995, 60, 3663.
(6) (a) Kuhn, R.; Gauhe, A. Chem. Ber. 1965, 98, 395.
(b) McLean, R. L.; Suttajit, M.; Beidler, J.; Winzler, R. J. J.
Biol. Chem. 1971, 246, 803. (c) Peters, B. P.; Aronson, N.
N. Carbohydr. Res. 1976, 47, 345. (d) Reuter, G.; Schauer,
R.; Szeiki, C.; Kamerling, J. P.; Vliegenthart, J. F. G.
Glycoconjugate J. 1989, 6, 35.
NMR (75 MHz, D2O): = 177.77 (C-1), 175.1 (C=O), 98.17
(C-2), 75.80 (C-6), 69.39 (C-4), 63.80 (C-7), 55.22 (C-5),
41.91 (C-3), 25.03 (CH3); ESI-MS: m/z = 248 ([M – H]-,
100), 230(41). 10d: 1H NMR (300 MHz, D2O): = 7.28–
7.40 (5 H, m, Har), 3.63 (2 H, s, CH2), 3.50–3.91 (5 H, m, 4-
,5-,6-,7-H), 2.33 (1 H, dd, J3eq,3ax = 12.9 Hz, J3eq,4 = 4.9 Hz,
3eq-H), 1.84 (1 H, dd, J3ax,3eq = 12.9 Hz, J3ax,4 = 11.8 Hz,
3ax-H); 13C NMR (75 MHz, D2O): δ = 178.16 (C=O), 175.66
(C-1), 137.72 (Ci), 131.92, 131.78, 130.19 (Co,m,p), 97.81 (C-
2), 75.70 (C-6), 68.94 (C-4), 63.86 (C-7), 55.16
(7) Synthesis of derivatives of 10a: (a) from D-
glucuronolactone:Vlahov, I. R.; Vlahova, P. I.; Schmidt, R.
R. Tetrahedron Lett. 1991, 32, 7025. (b) From D-serine:
Chappell, M. D.; Halcomb, R. L. Org. Lett. 2000, 2, 2003.
(c) From L-ascorbic acid: Banwell, M.; De Savi, C.;
Hockless, D.; Watson, K. Chem. Commun. 1998, 645.
(8) Knorst, M.; Fessner, W.-D. Adv. Synth. Catal. 2001, 343,
698.
(9) (a) Jurczak, J.; Golebiowski, A. Chem. Rev. 1989, 89, 149.
(b) Reetz, M. T. Angew. Chem., Int. Ed. Engl. 1991, 30,
1531. (c) Steurer, S.; Podlech, J. Eur. J. Org. Chem. 1999,
1551.
(C-5), 45.10 (CH2), 41.79 (C-3); ESI-MS: m/z = 420 ([M +
Na + 4 H2O]+, 100), 402 ([M + Na + 3 H2O]+, 95)
(13) Warwel, M.; Fessner, W.-D. Synlett 2000, 6, 865.
(14) The origin of the pronounced selectivity at low pH has not
been thoroughly investigated yet but it may be speculated
that protonation of the electrophile will lead to a tighter
transition state for the addition. For an in-depth discussion,
see: Paquette, L. A.; Mitzel, T. M. J. Am. Chem. Soc. 1996,
118, 1931.
(15) Lemieux, G. A.; Bertozzi, C. R. Chem. Biol. 2001, 8, 265.
(16) Villieras, J.; Rambaud, M. Org. Synth. 1988, 66, 220.
Synlett 2002, No. 12, 2104–2106 ISSN 0936-5214 © Thieme Stuttgart · New York