10.1002/chem.201901451
Chemistry - A European Journal
FULL PAPER
5106; b) G. Evano, N. Blanchard, G. Compain, A. Coste, C. S. Demmer,
W. Gati, C. Guissart, J. Heimburger, N. Henry, K. Jouvin, G.
Karthikeyan, A. Laouiti, M. Lecomte, A. Martin-Mingot, B. Métayer, B.
Michelet, A. Nitelet, C. Theunissen, S. Thibaudeau, J. Wang, M. Zarca,
C. Zhang, Chem. Lett. 2016, 45, 574–585.
secondary amides by hydrolysis of the ynamine. Interestingly,
these substituted anilides, including N-ethynyl-substituted
compounds, do not have a pyramidalized nitrogen atom, even
though they are susceptible to hydrolysis. In addition, the N–
C(sp) bond can be selectively cleaved by TMSOTf and MeOH.
Given the decreased double bond character of N-ethynyl-
substituted amides, these compounds might be useful as
activated amide substrates for coupling reactions. The results
presented here should also be useful in the design and
structure-activity relationship studies of conformationally
controlled biologically active compounds, as well as cleavable
tether groups for drug-delivery systems.
[11] For recent reviews of activation of amides, see; a) M. Szostak, G. Meng,
S. Shi, Synlett 2016, 27, 2530–2540; b) J. E. Dander, N. K. Garg, ACS
Catal. 2017, 7, 1413–1423; c) C. Meng, M. Szostak, Eur. J. Org. Chem.
2018, 2352–2365; d) S. Shi, S. P. Nolan, M. Szostak, Acc. Chem. Res.
2018, 51, 2589–2599; e) M. B. Chaudhari, B. Gnanaprakasam, Chem.
Asian J. 2019, 14, 76–93.
[12] M. J. Frisch, et al. Gaussian 09, Revision Ds.01; Gaussian, Inc.:
Wallingford, CT, 2013. (See SI for full citation.)
[13] L. Jiang, G. E. Job, A. Klapars, S. L. Buchwald, Org. Lett. 2003, 5,
3667–3669.
[14] a) M. O. Frederick, J. A. Mulder, M. R. Tracey, R. P. Hsung, J. Huang,
K. C. M. Kurtz, L. Shen, C. J. Douglas, J. Am. Chem. Soc. 2003, 125,
2368–2369; b) J. R. Dunetz, R. L. Danheiser, Org. Lett. 2003, 5, 4011–
4014; c) X. Zhang, Y. Zhang, J. Huang, R. P. Hsung, K. C. M. Kurtz, J.
Oppenheimer, M. E. Petersen, I. K. Sagamanova, L. Shen, M. R.
Tracey, J. Org. Chem. 2006, 71, 4170–4177; d) T. Hamada, X. Ye, S. S.
Stahl, J. Am. Chem. Soc. 2008, 130, 833–835.
Acknowledgements
R. Y. is grateful to the The Japan Science Society for partial
support for this research. We are also grateful to Dr. Masatoshi
Kawahata for helpful discussions and advises concerning crystal
structual analysis.
[15] The data of crystals (CCDC 1895329 for 3, CCDC 1895328 for 4,
CCDC 1895326 for 5, CCDC 1895327 for 6 and CCDC 1895330 for
7) can be obtained free of charge
Crystallographic Data
from
The
Cambridge
via
Center
Keywords: Amides • Alkynes • Conformation analysis •
Ynamides • Transacylation
[16] A. Itai, Y. Toriumi, N. Tomioka, H. Kagechika, I. Azumaya, K. Shudo, T
Tetrahedron Lett. 1989, 30, 6177–6180.
[1]
[2]
A. Greenberg, C. M. Breneman, J. F. Liebman, The amide linkage:
Structural significance in chemistry, biochemistry, and materials
science, John Wiley & Sons, New York, 1999.
[17] a) R. Szostak, J. Aube, M. Szostak, Chem. Commun. 2015, 51, 6395–
6398; b) R. Szostak, J. Aube, M. Szostak, J. Org. Chem. 2015, 80,
7905–7927.
For recent reviews of twisted amides, see; a) M. Szostak, J. Aube,
Chem Rev. 2013, 113, 5701–5765; b) C. Liu, M. Szostak, Chem. Eur.
J. 2017, 23, 7157–7173; c) S. Adachi, N. Kumagai, M. Shibasaki, Chem.
Sci. 2017, 8, 85–90.
[18] An example of a similar situation, which repulsion of carbonyl oxygen
and alkyne determines the preferred conformation, see; M. Pilkington,
S. Tayyip, J. D. Wallis, J. Chem. Soc. Perkin Trans. 2 1994, 2481–2484.
[19] a) D. G. Gehring, W. A. Mosher, G. S. Reddy, J. Org. Chem. 1966, 31,
3436-3437; b) R. R. Fraser, J.-L. A. Roustan, J. R. Mahajan,. Can. J.
Chem. 1979, 57, 2239-2244.
[3]
[4]
In this paper, cis and trans, defined as shown in Figure 1, are used
instead of E and Z nomenclature to avoid confusion, since the priority of
the phenyl group would be different between 3 and 5.
[20] For a example of nN → πAr conjugation for amide activation, see; a) G.
Meng, R. Lalancette, R. Szostak, M. Szostak, Org. Lett. 2017, 19,
4656–4659; b) G. Meng, R. Szostak, M. Szostak, Org. Lett. 2017, 19,
3596–3599.
a) W. E. Stewart, T. H. Sidwell, Chem. Rev. 1970, 70, 517–551; b) S.
Kasino, K. Ito, M. Haisa, Bull. Chem. Soc. Jpn, 1979, 52, 365–369; c) A.
Itai, Y. Toriumi, N. Tomioka, H. Kagechika, I. Azumaya, K. Shudo,
Tetrahedron Lett. 1989, 30, 6177–6180; d) A. Itai, Y. Toriumi, S. Saito,
H. Kagechika, K. Shudo, J. Am. Chem. Soc. 1992, 114, 10649–10650.
For a review, see; Y. Zheng, C. M. Tice, S. B. Singh, Bioorg. Med.
Chem. Lett. 2017, 27, 2825–2837.
[21] a) J. I. Mujika, J. M. Matxain, L. A. Eriksson, X. Lopez, Chem. Eur. J.
2006, 12, 7215–7224; b) C. R. Kemnitz, M. J. Loewen, J. Am. Chem.
Soc. 2007, 129, 2521–2528.
[5]
[22] M. Oki, Applications of Dynamic NMR Spectroscopy to Organic
Chemistry, VCH Publishers, New York, 1985.
[6]
For typical examples, see; a) H. Kagechika, E. Kawachi, Y. Hashimoto,
T. Himi, K. Shudo, J. Med. Chem. 1988, 31, 2182–2192; b) C. S. J.
Walpole, R. Wigglesworth, S. Bevan, E. A. Campbell, A. Dray, I. F.
James, K. J. Masdin, M. N. Perkins, J. Winter, J. Med. Chem. 1993, 36,
2373–2380.
[23] V. Pace, W. Holzer, G. Meng, S. Shi, R. Lalancette, R. Szostak, M.
Szostak, Chem. Eur. J. 2016, 22, 14494–14498.
[24] A. J. Bennet, V. Somayaji, R. S. Brown, B. D. Santarsiero, J. Am. Chem.
Soc. 1991, 113, 7563–7571.
[7]
[8]
S. Saito, Y. Toriumi, N. Tomioka, A. Itai, J. Org. Chem. 1995, 60, 4715–
4720.
[25] a) S. Xu, J. Liu, D. Hu, D. X. Bi, Green Chem. 2015, 17, 184–187; b) H.
Huang, L. Tang, Y. Xi, G. He, H. Zhu, Tetrahedron Lett. 2016, 57,
1873–1876.
a) R. Yamasaki, A. Tanatani, I. Azumaya, S. Saito, K. Yamaguchi, H.
Kagechika, Org. Lett. 2003, 5, 1265–1267; b) I. Okamoto, R. Yamasaki,
M. Sawamura, T. Kato, N. Nagayama, T. Takeya, O. Tamura, H. Masu,
I. Azumaya, K. Yamaguchi, H. Kagechika, A. Tanatani, Org. Lett. 2007,
9, 5545–5547; c) I. Ai, M. Sato, R. Yamasaki, I. Okamoto, Tetrahedron
Lett. 2016, 57, 438–441.
[26] In the coupling reaction for the synthesis of 5, a small amount of 9 was
observed, probably due to hydrolysis of 5’ by contaminating H2O.
[27] The data of crystals (CCDC 1895325 for 9) can be obtained free
of charge from The Cambridge Crystallographic Data Center
[9]
A. V. Afonin, B. A. Trofimov, S. F. Malysheva, A. V. Vashchenko,
Zhurnal Organicheskoi Khimii, 1992, 28, 225–236.
[28] K. Ohashi, S. Mihara, A. H. Sato, M. Ide, T. Iwasawa, Tetrahedron Lett.
2014, 55, 632–635.
[10] For recent reviews, see; a) K. A. DeKorver, H. Li, A. G. Lohse, R.
Hayashi, Z. Lu, Y. Zhang, R. P. Hsung, Chem. Rev. 2010, 110, 5064–
This article is protected by copyright. All rights reserved.