C
A.-L. Lücke et al.
Letter
Synlett
Dinitrophenyl)thiophene (7e), 2,4-dinitro-1,1′:4′,1′′-ter-
phenyl (7f), 2′,4′-dinitro-(1,1′-biphenyl)-4-thiol (7g), and
2,4-dinitro-4′-(trifluoromethoxy)-1,1′-biphenyl (7h) were
formed in very good yields by Suzuki–Miyaura reaction in
acid (Table 4, entries 5–8).
In summary, we demonstrated that the catalyst systems
consisting of sydnone carboxylate 3 and Pd(PPh3)4 (cat. 1)
required acidic conditions (pH 5.7) to give good to excellent
yields of Suzuki–Miyaura cross-couplings, whereas the syd-
none carbene palladium complex 4 needed basic conditions
(pH 8.0).
Table 4 Yields of the Model Reaction at pH 5.7
Funding Information
Entry Ar
Reaction conditionsa Yield (%)b
The Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowl-
1
2
3
4
5
6
7
8
6b 1-naphthyl
cat. 1
cat. 2
cat. 1
cat. 1
cat. 1
cat. 1
cat. 1
cat. 1
7b 91
7b 43
7c 91
7d 53
7e 94
7f 91
7g 89
7h 86
edged for financial support
??
?(?)
6b 1-naphthyl
6c 9-phenanthryl
6dm-tolyl
Supporting Information
6e 2-thiophen
Supporting information for this article is available online at
S
u
p
p
o
nrtogI
f
rmoaitn
S
u
p
p
ortiInfogrmoaitn
6f 4-biphenyl
6g 4-(methylthio)phenyl
6h 4-(trifluoromethoxy)phenyl
References and Notes
aReaction conditions: Cat. 1 or 2 (10 mol%), 1,4-dioxane (8 mL), 5 (0.2
mmol), 6a–h (2 equiv), Na2CO3 (4.7 mmol), AcOH (17 mmol), water (2
mL).
(1) (a) Guram, A. S.; Milne, J. E.; Tedrow, S.; Walker, S. D. In Science
of Synthesis;
2
V0o.1l25/ Molander, G.-A., Ed.; Thieme: Stuttgart, 2012, 9.
bIsolated yields after chromatography.
(b) De Meijere, A.; Bräse, S.; Oestreich, M. Metal-Catalyzed
Cross-Coupling Reactions and More; Wiley-VCH: Weinheim,
2014. Some recent reviews: (c) Mo, S.; Zhang, Z.; Zhang, G.;
Ding, Y.; Li, Q. H. Curr. Org. Synth. 2017, 14, 462. (d) Almond-
Thynne, J.; Blakemore, D. C.; Pryde, D. C.; Spivey, A. C. Chem. Sci.
2017, 8, 40. (e) Li, C.; Chen, D.; Tang, W. Synlett 2016, 27, 2183.
(f) Hussain, I.; Capricho, J.; Yawer, M. A. Adv. Synth. Catal. 2016,
358, 3320. (g) Oger, N.; Felpin, F.-X. ChemCatChem. 2016, 8,
1998. (h) Das, P.; Linert, W. Coord. Chem. Rev. 2016, 311, 1.
(i) Rossi, R.; Bellina, F.; Lessi, M.; Manzini, C.; Marianetti, G.;
Perego, L. A. Curr. Org. Chem. 2015, 19, 1302. (j) Maluenda, I.;
Navarro, O. Molecules 2015, 20, 7528. (k) Paul, S.; Islam, M. M.;
Islam, S. M. RSC Adv. 2015, 5, 42193. (l) Fyfe, J. W. B.; Watson, A.
J. B. Synlett 2015, 26, 1139. (m) Glasspoole, B. W.; Keske, E. C.;
Crudden, C. M. RSC Catal. Ser. 2015, 21, 521. (n) Lennox, A.;
Lloyd-Jones, G. RSC Catal. Ser. 2015, 21, 322. (o) Zhang, D.;
Wang, Q. Coord. Chem. Rev. 2015, 286, 1.
Finally, we examined the role of sodium acetate and car-
ried out a series of reactions of 2,4-dinitrochlorobenzene
(5) and phenylboronic acid (6a) in the presence of the syd-
none carbene palladium complex (cat. 2). As shown in Table
5, the presence of water is necessary, and best results were
achieved when sodium acetate, sodium carbonate, and wa-
ter were present (Table 5, entry 5). These conditions repre-
sent an alternative procedure to those shown in Table 2 (en-
try 2).
Table 5 Yields of the Model Reaction of 5 and 6a in the Presence of
Cat. 2 (10 mol%) and Sodium Acetate
(2) (a) Kürti, L.; Czakó, B. Strategic Applications of Named Reactions
in Organic Synthesis; Elsevier Academic Press: Amsterdam,
2005, 448. (b) Willemse, T.; Schepens, W.; van Vlijemen, H. W.
T.; Maes, B. U. W.; Ballet, S. Catalysts 2017, 7, 74. (c) Prieto, M.;
Mayor, S.; Lloyd-Williams, P.; Giralt, E. J. Org. Chem. 2009, 74,
9202. (d) Prieto, M.; Mayor, S.; Rodríguez, K.; Lloyd-Williams, P.;
Giralt, E. J. Org. Chem. 2007, 72, 1047.
(3) (a) Schmidt, A.; Batsyts, S.; Smeyanov, A.; Freese, T.; Hübner, E.
G.; Nieger, M. J. Org. Chem. 2016, 81, 4202. (b) Liu, M.; Nieger,
M.; Schmidt, A. Chem. Commun. 2015, 51, 477. (c) Schmidt, A.;
Kindermann, M. K. J. Org. Chem. 1997, 62, 3910.
(4) (a) Liu, M.; Nieger, M.; Hübner, E.; Schmidt, A. Chem. Eur. J.
2016, 22, 5416. (b) Schmidt, A.; Münster, N.; Dreger, A. Angew.
Chem. Int. Ed. 2010, 49, 2790; Angew. Chem. 2010, 122, 2851.
(5) Wiechmann, S.; Freese, T.; Drafz, M. H. H.; Hübner, E. G.;
Namyslo, J. C.; Nieger, M.; Schmidt, A. Chem. Commun. 2014, 50,
11822.
(6) (a) Rahimi, A.; Pápai, I.; Madarász, Á.; Gjikaj, M.; Namyslo, J. C.;
Schmidt, A. Eur. J. Org. Chem. 2012, 754. (b) Rahimi, A.; Namyslo,
J. C.; Drafz, M.; Halm, J.; Hübner, E.; Nieger, M.; Rautzenberg, N.;
Schmidt, A. J. Org. Chem. 2011, 76, 7316.
Entry
Reaction conditionsa
pH value
Yield (%)b
1
2
3
4
5
NaOAc
–
16
17
NaOAc, Na2CO3
NaOAc, Na2CO3, H2O, AcOH
NaOAc, H2O
–
5.9
8.3
8.1
68
93
NaOAc, Na2CO3, H2O
>99
aReaction conditions: NaOAc (6.1 mmol), Na2CO3 (4.7 mmol), H2O (2 mL),
AcOH (17 mmol), respectively.
bIsolated yields after chromatography.
Finally, we added N-Boc-O-benzyl-L-tyrosine as optical-
ly pure compound into selected model reactions and mea-
sured the optical rotation after isolation from the reaction
mixtures. No racemization took place under the reaction
conditions applied. Additional investigations along these
lines are under way.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2017, 28, A–D