C O M M U N I C A T I O N S
Scheme 1. Regio- and Stereocontrolled Synthesis of the
cyclopentenes followed by Cu/Pd cross-coupling and Suzuki-
Miyaura coupling with various aryl iodides. Further studies to
disclose the factors for the regioselectivity and to expand this
approach to a general stereocontrolled synthesis of π-conjugated
molecules will be the subjects of forthcoming papers.
Boron-Containing Tetrasubstituted Olefinsa
Acknowledgment. The authors gratefully thank Prof. Tamotsu
Takahashi for a generous gift of Cp2ZrCl2 and Prof. Hiroshi
Nakazawa and Dr. Masumi Itazaki at Osaka City University for
measurements of elemental analyses. This work was supported by
a Grant-in-Aid for Scientific Research on Priority Areas “Advanced
Molecular Transformations of Carbon Resources” from the Ministry
of Education, Culture, Sports, Science and Technology, Japan. Y.N.
also acknowledges Astellas Foundation for Research on Medicinal
Resources, Saneyoshi Scholarship Foundation, and the Japan
Securities Scholarship Foundation.
a
i
Reagents and conditions: (a) PrOH (0.8 equiv), CuCl (1.0 equiv),
Supporting Information Available: Details of all experimental
procedures and spectroscopic data of new compounds. This material
Pd(PPh3)4 (10 mol %), the corresponding aryl iodide (1.0 equiv), THF,
room temp, 1 h; (b) ethyl vinyl ether (1.5 equiv), 50 °C, 20 h, then CuCl
(1.0 equiv), DMPU (1.5 equiv), Pd(PPh3)4 (10 mol %), iodobenzene (1.1
equiv), THF, 50 °C, 3 h; (c) allyloxytrimethylsilane (1.5 equiv), 50 °C, 20
h, then CuCl (1.0 equiv), DMPU (1.5 equiv), Pd(PPh3)4 (10 mol %),
iodobenzene (1.1 equiv), THF, 50 °C, 3 h; (d) homoallyl bromide (1.5
equiv), 50 °C, 20 h, then CuCl (1.0 equiv), DMPU (1.5 equiv), Pd(PPh3)4(10
mol %), iodobenzene (1.1 equiv), THF, 50 °C, 3 h.
References
(1) (a) Denmark, S. E.; Amburgey, J. J. Am. Chem. Soc. 1993, 115, 10386.
(b) Brown, S. D.; Armstrong, R. W. J. Am. Chem. Soc. 1996, 118, 6331.
(c) Organ, M. G.; Cooper, J. T.; Rogers, L. R.; Soleymanzadeh, F.; Paul,
T. J. Org. Chem. 2000, 65, 7959.
(2) (a) Itami, K.; Kamei, T.; Yoshida, J.-i. J. Am. Chem. Soc. 2003, 125,
14670. (b) Kamei, T.; Itami, K.; Yoshida, J.-i. AdV. Synth. Catal. 2004,
346, 1824.
(3) Zhou, C.; Larock, R. C. J. Org. Chem. 2005, 70, 3765.
(4) Shimizu, M.; Nakamaki, C.; Shimono, K.; Schelper, M.; Kurahashi, T.;
Hiyama, T. J. Am. Chem. Soc. 2005, 127, 12506.
(5) Takahashi, T.; Kotora, M.; Hara, R.; Xi, Z. Bull. Chem. Soc. Jpn. 1999,
72, 2591.
(6) Tilley reported that unsymmetrical but tetra- or pentafluorophenyl sub-
stituted diarylethynes resulted in regioselective couplings to zirconacy-
clopentadienes owing to the effects of electron-withdrawing perfluoroaryl
groups, see: Johnson, S. A.; Liu, F.-Q.; Suh, M. C.; Zuercher, S.; Haufe,
M.; Mao, S. S. H.; Tilley, T. D. J. Am. Chem. Soc. 2003, 125, 4199.
(7) See Supporting Information.
(8) (a) Buchwald, S. L.; Nielsen, R. B. J. Am. Chem. Soc. 1989, 111, 2870.
(b) Hara, R.; Xi, Z.; Kotora, M.; Xi, C.; Takahashi, T. Chem. Lett. 1996,
1003.
Before hydrolysis, zirconacyclopentene A formed in situ can
serve as versatile precursors of tetrasubstituted olefins bearing the
boron functionalities. For example, as shown in Scheme 1,
stereocontrolled formation of 5a-c were easily accomplished by
sequential one-pot Pd-catalyzed coupling reactions with various aryl
iodides. Again, the stereochemistry of 5a-c can be confirmed by
comparison of the spectroscopic data with those of the reported
authentic compounds of stereochemistry verified by X-ray analyses.4
Substitution of the ethylene moiety of zirconacyclopentene A (Ar1
) C6H5) with the corresponding unsaturated organic molecules
afforded zirconacyclopentenes B, which further reacted with
iodobenzene under similar conditions to afford 6, 7, and 8.16
(9) Recent papers for synthetic utility of 1-alkynylboronates, see: (a)
Yamamoto, Y.; Ishii, J.; Nishiyama, H.; Itoh, K. J. Am. Chem. Soc. 2004,
126, 3712. (b) Nishihara, Y.; Okamoto, M.; Inoue, Y.; Miyazaki, M.;
Miyasaka, M.; Takagi, K. Tetrahedron Lett. 2005, 46, 8661. (c) Suginome,
M.; Shirakura, M.; Yamamoto, A. J. Am. Chem. Soc. 2006, 128, 14438.
(10) (a) Zheng, B.; Srebnik, M. J. Organomet. Chem. 1994, 474, 49. (b) Deloux,
L.; Skrzypczak-Jankun, E.; Cheesman, B. V.; Sabat, M.; Srebnik, M. J.
Am. Chem. Soc. 1994, 116, 10302. (c) Deloux, L.; Srebnik, M. J. Org.
Chem. 1994, 59, 6871. (d) Zheng, B.; Srebnik, M. J. Org. Chem. 1995,
60, 3278. (e) Deloux, L.; Srebnik, M. J. Org. Chem. 1995, 60, 3276. (f)
Pereira, S.; Srebnik, M. J. Org. Chem. 1995, 60, 4316. (g) Pereira, S.;
Srebnik, M. Organometallics 1995, 14, 3127. (h) Desurmont, G.; Klein,
R.; Uhlenbrock, S.; Laloe¨, E.; Deloux, L.; Giolando, D. M.; Kim, Y. W.;
Pereira, S.; Srebnik, S. Organometallics 1996, 15, 3323. (i) Deloux, L.;
Srebnik, M. Tetrahedron Lett. 1996, 37, 2735. (j) Quntar, A. A. A.;
Srebnik, M. Org. Lett. 2004, 6, 4243.
An additional motivation for this study is our interest in
developing an efficient route to (Z)-tamoxifen, which has been
widely used for the treatment of breast cancer at all stages.
Tamoxifen’s anti-estrogen biological activity resides entirely in the
Z-isomer. Although there are a number of stereoselective syntheses
of (Z)-tamoxifen,2,4,17 either they are not regio- and stereoselective
or they involve multistep procedures employing starting materials
that are not readily available. Our route to (Z)-tamoxifen involves
a multicomponent reaction of readily available 5a (from 2a,
(11) (a) Takahashi, T.; Nitto, Y.; Seki, T.; Saburi, M.; Negishi, E. Chem. Lett.
1990, 2259. (b) Takahashi, T.; Seki, T.; Nitto, Y.; Saburi, M.; Rousset,
C. J.; Negishi, E. J. Am. Chem. Soc. 1991, 113, 6266.
(12) (a) Takahashi, T.; Xi, Z.; Rousset, C. J.; Suzuki, N. Chem. Lett. 1993,
1001. (b) Xi, Z.; Hara, R.; Takahashi, T. J. Org. Chem. 1995, 60, 4444.
(13) Miyaura, N.; Suzuki, A. Chem. ReV. 1995, 95, 2457.
(14) Gonzalez-Bobes, F.; Fu, G. C. J. Am. Chem. Soc. 2006, 128, 5360.
(15) Z-Configuration of 4 was assigned by comparison of the spectral data
with those of (E)-4. Shi, J.-c.; Negishi, E.-i. J. Organomet. Chem. 2003,
687, 518.
(16) Hara, R.; Nishihara, Y.; Landre´, P. D.; Takahashi, T. Tetrahedron Lett.
1997, 38, 447 and references cited therein.
i
ethylene, PrOH, iodobenzene), and N-[2-(4-iodophenoxy)ethyl]-
N,N-dimethylamine (eq 4). It is noteworthy that the reaction is
(17) For some representative tamoxifen syntheses, see: (a) Millar, R. B.; Al-
Hassan, M. I. J. Org. Chem. 1985, 50, 2121. (b) Potter, G. A.; McCague,
R. J. Org. Chem. 1990, 55, 6184. (c) Brown, S. D.; Armstrong, R. W. J.
Org. Chem. 1997, 62, 7076. (d) Studemann, T.; Knochel, P. Angew. Chem.,
Int. Ed. Engl. 1997, 36, 93. (e) Tessier, P. E.; Penwell, A. J.; Souza, F. E.
S.; Fallis, A. G. Org. Lett. 2003, 5, 2989.
highly regioselective (possibly >99:1), since the crude tamoxifen
1
obtained is around 99% pure according to H NMR spectrum.
In summary, we have developed a versatile direct synthesis of
multisubstituted olefins by a regioselective formation of zircona-
JA075234Y
9
J. AM. CHEM. SOC. VOL. 129, NO. 42, 2007 12635