T. Mala’bi et al. / Tetrahedron Letters 52 (2011) 1854–1857
1857
In conclusion, the formation of 1 via 1,9-Ac2AN in the Friedel–
References and notes
Crafts acyl rearrangements of diacetylanthracenes in PPA (vide
supra) supports the contention that in these reactions, kinetic con-
trol wins out over thermodynamic control. It remains to be seen
whether this conclusion applies to other polycyclic aromatic ke-
tones (PAKs) and whether intermolecularity and/or intramolecu-
larity are essential ingredients of kinetic control in Friedel–Crafts
acyl rearrangements of PAKs (Agranat–Gore rearrangement19).
1. Friedel–Crafts Chemistry; Olah, G. A., Ed.; Wiley-Interscience: New York, 1973. p
102.
2. Comprehensive Organic Name Reactions and Reagents; Wang, Z., Ed.Friedel-Crafts
Acylation; Wiley, 2009; Vol. 1, pp 1126–1130. Chapter 248.
3. Norman, R. O. C.; Taylor, R. Electrophilic Substitution in Benzenoid Compounds;
Elsevier: London, 1965. pp 174–182.
4. Buehler, C. A.; Pearson, D. E. Survey of Organic Synthesis; Wiley-Interscience:
New York, 1970. p. 653.
5. Pearson, D. E.; Buehler, C. A. Synthesis 1971, 455–477.
6. Gore, P. H. Chem. Ind. 1974, 18, 727–731.
Experimental
7. Gore, P. H. Chem. Rev. 1955, 55, 229–281.
8. Gore, P. H., Ed.Friedel–Crafts and Related Reactions; Olah, G. A., Ed.; Wiley-
Interscience: New York, 1964; Vol. 3, pp 1–381 (part 1).
9. Agranat, I.; Shih, Y.-S.; Bentor, Y. J. Am. Chem. Soc. 1974, 96, 1259–1260.
10. Andreou, A. D.; Gore, P. H.; Morris, D. F. C. J. Chem. Soc. Chem. Commun. 1978,
271–272.
11. Dowdy, D.; Gore, P. H.; Waters, D. N. J. Chem. Soc., Perkin Trans. 2 1991, 1149–
1159.
12. Frangopol, M.; Genunche, A.; Frangopol, P. T.; Balaban, A. T. Tetrahedron 1964,
20, 1881–1888.
13. Balaban, A.T. In Omagiu Acad. Prof. Raluca Ripan,; Dragulesea, C., Ed.; Editura
Academiei Republicii Socialiste Romania: Bucharest, 1966.
14. Nenitzescu, C. D.; Balaban, A. T. In Friedel–Crafts and Related Reactions; Olah, G.
A., Ed.; Wiley-Interscience: New York, 1964; vol. 3, pp 1033–1152 (part 2).
15. Effenberger, F.; Klenk, H.; Reiter, P. L. Angew. Chem., Int. Ed. Engl. 1973, 12, 775–
776.
In a 150 mL round-bottomed flask with a magnetic stirrer and
anhydrous argon atmosphere, PPA (133 g) was added; after stirring
for a few minutes at 150 °C, 1,5-Ac2AN (1.0 g, 3.8 mmol) was
added. The mixture was stirred at 150 °C for 3 h, and then poured
into a mixture of ice and water (500 mL) and stirred overnight. The
products were extracted with CH2Cl2 (4 Â 50 mL), washed with
saturated NaHCO3 solution (2 Â 50 mL) and H2O (2 Â 50 mL), and
dried over MgSO4. The organic solvent was evaporated in vacuo
to give a crude mixture of 1 and 1,5-Ac2AN in an 85:15 ratio. The
crude product was purified by repeated column chromatography
on silica gel 60, using petroleum ether (40–60 °C)–EtOAc as eluent,
from 98:2 to 80:20, followed by recrystallization from EtOAc. Com-
16. Adams, C. J.; Earle, M. J.; Roberts, G.; Seddon, K. R. Chem. Commun. 1998, 2097–
2098.
pound 1 was obtained as red crystals, mp 193 °C (lit., mp 182 °C27
)
17. Okamoto, A.; Yonezawa, N. Chem. Lett. 2009, 38, 914–915.
18. Agranat, I.; Bentor, Y.; Shih, Y.-S. J. Am. Chem. Soc. 1977, 99, 7068–7070.
19. Mala’bi, T.; Cohen, S.; Pogodin, S.; Agranat, I. Lett. Org. Chem. 2009, 6, 237–241.
20. Levy, L.; Pogodin, S.; Cohen, S.; Agranat, I. Lett. Org. Chem. 2007, 4, 314–318.
21. Bassilios, H. F.; Shawky, M.; Salem, A. Y. Recl. Trav. Chim. Pays-Bas 1962, 81,
679–682.
22. Bassilios, H. F.; Shawky, M.; Salem, A. Y. Recl. Trav. Chim. Pays-Bas 1963, 82,
298–301.
23. Sarobe, M.; Jenneskens, L. W. J. Org. Chem. 1997, 62, 8247–8250.
24. Duerr, B. F.; Chung, Y.-S.; Czarnik, A. W. J. Org. Chem. 1988, 53, 2120–2122.
25. Gore, P. H.; Thadani, C. K. J. Chem. Soc. C 1966, 1729–1733.
26. (E) and (Z) are the stereodescriptors applied to the acetylanthracene and
in 25% yield; MS, m/z = 244 (12C18H12O); IR, 1635 cmÀ1 (C@O); UV/
Vis (CHCl3, 1.4 Â 10À4 M nm): 489 sh (
e
7500), 462 (
e
8350), 442
25800)
sh, 370 (
e
7700), 354 sh (
e
7400), 269 (
e
26000), 241 (e
(lit., 462, 488 sh27). 1H NMR (500 MHz, CDCl3, ppm) d = 10.16
(dd, J1 = 9.0 Hz, J2 = 1.0 Hz, 1H, H11), 8.73 (s, 1H, H7), 8.13 (d,
J = 8.0 Hz, 1H, H6), 8.07 (dt, J1 = 8.3 Hz, J2 = 0.5 Hz, J3 = 1.0 Hz, 1H,
H8), 8.01 (dd, J1 = 7.2, J2 = 1.0 Hz, 1H, H4), 7.83 (ddd, J1 = 9.0 Hz,
J2 = 7.0 Hz, J3 = 1.5 Hz, 1H, H10), 7.61 (ddd, J1 = 8.3 Hz, J2 = 6.8 Hz,
J3 = 1.0 Hz, 1H, H9), 7.57 (dd, J1 = 8.5 Hz, J2 = 7.0 Hz, 1H, H5), 6.75
(d, J = 1.0 Hz, 1H, H2), 2.57 (d, J = 1.0 Hz, 3H, CH3). 13C NMR
(125 MHz, CDCl3, ppm) d = 187.8 (C1@O), 145.4 (C3), 137.4 (C7),
133.4 (C11a), 133.1 (C6), 132.2 (C7a), 131.7 (C10), 130.9 (C2), 129.8
(C4), 129.7 (C3a), 129.6 (C6a), 129.3 (C8), 128.3 (C11c), 127.8 (C11),
126.3 (C9), 125.0 (C5), 122.7 (C11b), 19.3 (CH3).
diacetylanthracene structures with
a fractional bond order of the bond
between the carbonyl carbon and the aromatic carbon.
27. Compound 1 has been described in the patent literature: DE 2,262,857 (A1)
(27.06.1974); Eiglmeier, K. Chem. Abstr. 1974, 81, 105112p (Accession Number
1974:505112).; GB 1,395,279 (A) (21.05.1975); Eiglmeyer, K. Chem. Abstr.
1974, 81, 120343h (Accession Number 1974:520343).; US 3,865,879 (A)
(11.02.1975); Eiglmeier, K. Chem. Abstr. 1973, 79, 137936k (Accession
Number 1973:537936).
28. Liljenberg, M.; Brinck, T.; Herschend, B.; Rein, T.; Rockwell, G.; Svensson, M. J.
Org. Chem. 2010, 75, 4696–4705.
Supplementary data
29. The calculations of the (Z,Z) and (E,Z) conformations of 1H,9-Ac2AN+1 lead to a
hemiketal, see Supplementary data.
Supplementary data (1H NMR spectrum of 1; total energies,
relative energies, and geometries of the diacetylanthracenes, their
30. Muller, P. Glossary of Terms Used in Physical Organic Chemistry (IUPAC
Recommendations 1994), Pure Appl. Chem. 1994, 66, 1077–1184.
O-protonates, their O,O-diprotonates and their
r-complexes) asso-
ciated with this article can be found, in the online version, at