7104
C. Schmuck, J. Dudaczek / Tetrahedron Letters 46 (2005) 7101–7105
Table 1. Association constants for 2a and 2b
Conclusion: We have shown here how the reversal of the
direction of an amide group in 5-amino substituted
guanidiniocarbonyl pyrrole receptors 2 changes both
substrate selectivityand relative binding affinities. We
are now exploring the scope of this new receptor class
for the selective binding of dipeptides over depsipetides.
N-Ac-L-Ala-OÀ
(NMe4+-salt) 18
O-Ac-L-Lac-OÀ
(NMe4+-salt) 19
2a
2b
460 MÀ1
320 MÀ1
220 MÀ1
270 MÀ1
Acknowledgements
amino pyrrole based receptors 2 prefer amides over
esters. Another noteworthyobservation is that the
acetyl receptor 2a binds alanine more efficientlythan
the valine receptor 2b, which is also in contrast to our
previous receptors 1 where the association constants
for the analogous valine derivative were close to three
times larger than those of simple alkyl amide receptors.
Hence, the change of the direction of the amide group
going from 1 to 2 significantlyaffects both the substrate
selectivity(amide vs ester) and the relative binding affin-
ities of these receptors (2a vs 2b).
This work was supported bythe Deutsche Forschungs-
gemeinschaft and the Fonds der Chemischen Industrie.
Supplementary data
Details of the synthesis of receptor 2a and 2b. Supple-
mentarydata associated with this article can be found,
The energyminimized structure (Macromodel 8.0, Am-
ber*, GB/SA water solvation, Monte Carlo search with
50.000 steps)14 of the complex between the acetyl recep-
tor 2a and alanine carboxylate 18 shown in Figure 4 of-
fers a possible explanation for these two effects, the
changes both in substrate selectivityand relative recep-
tor affinities: As in complexes with receptors of type 1,
the carboxylate forms a H-bond enforced ion pair with
the guanidiniocarbonyl pyrrole moiety of 2. Further-
more, the CO of the reversed amide can now form an
additional H-bond to the amide NH of the substrate
as also supported bythe observed complexation induced
shift changes in the NMR (Fig. 1). This explains the
preference for amides over esters. This interaction, how-
ever, brings the two acetyl groups of the substrate and
the receptor into close proximity. Any larger group at
this position of the receptor such as the valine substitu-
ent in 2b probablyleads to destabilizing steric interac-
tions with the substrate. Hence, the binding affinityof
2b is smaller than that of 2a.
References and notes
1. For recent reviews on anion binding byartificial receptors
see: (a) Best, M. D.; Tobey, S. L.; Anslyn, E. V. Coord.
Chem. Rev. 2003, 240, 3–15; (b) Gale, P. A. Coord. Chem.
Rev. 2003, 240, 191–221; (c) Fitzmaurice, R. J.; Kyne, G.
M.; Douheret, D.; Kilburn, J. D. J. Chem. Soc., Perkin
Trans. 1 2002, 841–864; (d) Schmidtchen, F. P.; Berger, M.
Chem. Rev. 1997, 97, 1609–1646.
2. For selected recent examples see: (a) Schmuck, C.; Geiger,
L. J. Am. Chem. Soc. 2004, 126, 8898–8899; (b) Schmuck,
C.; Heil, M. ChemBioChem 2003, 4, 1232–1238; (c)
Schmuck, C.; Bickert, V. Org. Lett. 2003, 5, 4579–4581;
(d) Rensing, S.; Schrader, T. Org. Lett. 2002, 4, 2161–
2164; (e) Jensen, K.; Braxmeier, T. M.; Demarcus, M.;
Frey, J. G.; Kilburn, J. D. Chem. Eur. J. 2002, 8, 1300–
1309.
3. For review articles on artificial peptide receptors see: (a)
Peczuh, M. W.; Hamilton, A. D. Chem. Rev. 2000, 100,
2479–2494; (b) Schneider, H.-J. Adv. Supramol. Chem.
2000, 6, 185–216; (c) Schneider, H. J. Angew. Chem. 1993,
105, 890–892; (d) Webb, T. H.; Wilcox, C. S. Chem. Soc.
Rev. 1993, 22, 383–395.
4. (a) Schmuck, C.; Wienand, W. J. Am. Chem. Soc. 2003,
125, 452–459; (b) Dietrich, B.; Fyles, D. L.; Fyles, T. M.;
Lehn, J.-M. Helv. Chim. Acta 1979, 62, 2763–2787.
5. Schmuck, C. Chem. Eur. J. 2000, 6, 709–718.
6. Schmuck, C.; Geiger, L. Curr. Org. Chem. 2003, 7, 1485–
1502.
7. Treibs, A.; Kolm, H. G. Analen der Chemie 1958, 614,
180–181.
8. (a) Becker, H. G.; Berger, W.; Domschke, G.; Fangha¨nel,
E.; Faust, J.; Fischer, M.; Gentz, F.; Gewald, K.; Gluch,
R.; Mayer, R.; Muller, K.; Pavel, D.; Schmidt, H.;
¨
Schollberg, K.; Schwetlick, K.; Seiler, E.; Zeppenfeld, G.
Organikum; VCH: Weinheim, 1999; (b) Sonnet, P. E. J.
Heterocycl. Chem. 1970, 7, 399–400; (c) Morgan, K. J.;
Morrey, D. P. Tetrahedron 1971, 27, 245–253; (d) Morgan,
K. J.; Morrey, D. P. Tetrahedron 1966, 22, 57–62.
9. Marques, M. A.; Doss, R. M.; Urbach, A. R.; Dervan, P. B.
Helv. Chim. Acta 2002, 85, 4485–4517.
10. Cornelis, A.; Laszlo, P. Synthesis 1985, 909–918.
11. Tedder, J. M.; Webster, B. J. Chem. Soc. 1960, 82, 3270–
3274.
Figure 4. Calculated energyminimized structure for the complex
between 18 (yellow) and 2a (grey). Hydrogen bonds are shown in
green, unfavourable steric interactions in red.
12. (a) Wilcox, C. S. In Frontiers in Supramolecular Chemistry
and Photochemistry; Schneider, H. J., Durr, H., Eds.;
¨