C O M M U N I C A T I O N S
Scheme 2
the synthesis of (+)-crocacin C (Scheme 4). Enabled by the ability to
carry a boron functional group through multiple synthetic steps, this
ICC-based route is short (nine steps in the longest linear sequence)
and readily amenable to analogue synthesis via incorporation of
modified building blocks into the same pathway.
As demonstrated herein, the stability of MIDA boronates to a broad
range of common reaction conditions and the unique compatibility of
these materials with chromatography collectively make it now possible
to reliably prepare complex boronic acid building blocks from simple
B-containing starting materials17 via multistep synthesis pathways.
Because of this and many other highly enabling features,6,7 MIDA
boronates represent a uniquely promising platform for the preparation,
storage, and utilization of organoborane building blocks in organic
synthesis.
Scheme 3
Acknowledgment. We gratefully acknowledge the NSF
(CAREER 0747778) and the Dreyfus Foundation for financial support,
Sigma-Aldrich for gifts of reagents, and S. Wilson for X-ray analysis.
M.D.B. is a Beckman Young Investigator.
Scheme 4
Supporting Information Available: Procedures, spectral data, spectra,
and X-ray crystallographic data (cif) for 1a and 1f. This material is available
References
widespread stability, MIDA boronates 1-5 and 7-10 were all
conveniently transformed into the corresponding boronic acids using
mild aqueous base (aq. NaOH/THF, 23 °C, 10 min, or aq. NaHCO3/
MeOH, 23 °C, 3.5 h, Supporting Information).6-8 Consistent with a
focused sensitivity to hard nucleophiles, we found that MIDA boronates
are generally incompatible with LiAlH4, DIBAL, TBAF, and a variety
of metal alkoxides.11 Importantly, compounds 1a-10 are all crystalline
solids, compatible with chromatography, and stable to long-term
benchtop storage under air.
Inspired by the simplicity and flexibility of peptide coupling, we
recently reported a potentially general strategy for small molecule
synthesis involving the iterative cross-coupling (ICC) of MIDA-
protected haloboronic acids.6-8 In an ideal ICC-based pathway,
building blocks having all of the required functional groups preinstalled
in the correct oxidation state and with the desired stereochemical
relationships are brought together using only stereospecific cross-
coupling reactions. We recognized that the newfound reagent compat-
ibilities of MIDA boronates should enable structurally and/or stereo-
chemically complex haloboronic acid building blocks to be readily
prepared from simple MIDA boronate starting materials via multistep
synthesis. To evaluate this potential, we targeted the total synthesis of
the natural product (+)-crocacin C12 (11) via ICC.
(1) Hall, D. G. Boronic Acids; Wiley-VCH: Weinheim, 2005.
(2) (a) Matteson, D. S.; Kandil, A. A.; Soundararajan, R. J. Am. Chem. Soc.
1990, 112, 3964–3969. (b) Matteson, D. S.; Man, H.-W.; Ho, O. C. J. Am.
Chem. Soc. 1996, 118, 4560–4566. (c) Luithle, J. E. A.; Pietruszka, J. J.
Org. Chem. 2000, 65, 9194–9200. (d) Hilt, G.; Bolze, P. Synthesis 2005,
13, 2091–2115. (e) Jin, B.; Liu, Q.; Sulikowski, G. A. Tetrahedron 2005,
61, 401–408. (f) Gopalarathnam, A.; Nelson, S. G. Org. Lett. 2006, 8, 7–
10.
(3) (a) Molander, G. A.; Ellis, N. Acc. Chem. Res. 2007, 40, 275–286. (b)
Darses, S.; Genet, J.-P. Chem. ReV. 2008, 108, 288–325.
(4) (a) Molander, G. A.; Petrillo, D. E. J. Am. Chem. Soc. 2006, 128, 9634–
9635. (b) Molander, G. A.; Ribagorda, M. J. Am. Chem. Soc. 2003, 125,
11148–11149. (c) Molander, G. A.; Petrillo, D. E. Org. Lett. 2008, 10,
1795–1798. (d) Molander, G. A.; Gormisky, P. E.; Sandrock, D. L. J. Org.
Chem. 2008, 73, 2052–2057. (e) Pucheault, M.; Darses, S.; Genet, J.-P.
J. Am. Chem. Soc. 2004, 126, 15356–15357.
(5) First synthesis and pioneering physical organic studies of MIDA
boronates: Mancilla, T.; Contreras, R.; Wrackmeyer, B. J. Organomet.
Chem. 1986, 307, 1–6.
(6) Gillis, E. P.; Burke, M. D. J. Am. Chem. Soc. 2007, 129, 6716–6717.
(7) Lee, S. J.; Gray, K. C.; Paek, J. S.; Burke, M. D. J. Am. Chem. Soc. 2008, 130,
466–468.
(8) A 1,8-diaminonaphthalene system for oligoarene synthesis: (a) Noguchi,
H.; Hojo, K.; Suginome, M. J. Am. Chem. Soc. 2007, 129, 758-759. (b)
Noguchi, H.; Shioda, T.; Chou, C.-M.; Suginome, M. Org. Lett. 2008, 10,
377-380. 1,8-Diaminonaphthalene boron reagents are stable to aqueous
base and deprotected using 2 N aq. H2SO4 for 10-13 h or 5 N aq. HCl for
4-12 h.
(9) (a) Vedso, P.; Olesen, P. H.; Hoeg-Jensen, T. Synlett 2004, n/a, 892–894.
(b) Gravel, M.; Thompson, K. A.; Zak, M.; Be´rube´, C.; Hall, D. G. J. Org.
Chem. 2002, 67, 3–15.
(10) (a) Psarras, T. G.; Zimmerman, H. K.; Rasiel, Y.; Weidman, H. Liebigs
Ann. Chem. 1962, 655, 48–54. (b) Contreras, R.; Garcı´a, C.; Mancilla, T.;
Wrackmeyer, B. J. Organomet. Chem. 1983, 246, 213–217.
(11) MIDA boronates have been alkylated on the MIDA ligand using >n-BuLi
as base at room temperature: Mancilla, T.; Romo, M. A. C.; Delgado, L. A.
Polyhedron 2007, 26, 1023–1028.
(12) (a) Kunze, B.; Jansen, R.; Hofle, G.; Reichenbach, H. J. Antibiot. 1994,
47, 881–886. Previous syntheses: (b) Dias, L. C.; de Oliviera, L. G. Org.
Lett. 2001, 3, 3951–3954. (c) Chakraborty, T. K.; Jayaprakash, S.
Tetrahedron Lett. 2001, 42, 497–499. (d) Feutrill, J. T.; Lilly, M. J.;
Rizzacasa, M. A. Org. Lett. 2000, 2, 3365–3367. (e) Sirasani, G.; Paul, T.;
rade, R. B. J. Org. Chem. 2008, 73, 6386–6388.
Retrosynthetic fragmentation of 11 via recursive cross-coupling
generates known building blocks 1212b and 14 and the structurally
complex, B-protected haloboronic acid 13 (Scheme 2). As shown in
Scheme 3, the synthesis of 13 commenced with acrolein MIDA
boronate 15, which was prepared from the known boronic acid.13
A
Paterson aldol reaction followed by diastereoselective reduction of the
resulting ꢀ-hydroxyketone12d yielded diol 16. Harnessing a key
advantage of MIDA boronates, silica gel chromatography was utilized
to remove the small amounts of diastereomeric byproducts that are
typically generated during these types of reactions. Permethylation of
16 with Meerwein’s salt and cleavage of the resulting PMB ether using
CAN afforded primary alcohol 17. DMP oxidation followed by Takai
olefination12d of the resulting aldehyde afforded bifunctional building
block 13. Notably, 15, 13, and all intermediates are crystalline solids,
compatible with chromatography, and stable to benchtop storage under
air. With building block 13 in hand, a CsF/CuI-promoted Stille
coupling14 with 12 followed by in situ boronic acid generation15 and
Pd/SPhos16-promoted cross-coupling between 18 and 14 completed
(13) Toure´, B. B.; Hoveyda, H. R.; Tailor, J.; Ulaczyk-Lesanko, A.; Hall, D. G.
Chem.sEur. J. 2003, 9, 466–474.
(14) Mee, S. P. H.; Lee, V.; Baldwin, J. E. Angew. Chem., Int. Ed. 2004, 43, 1132–
1136.
(15) Knapp, D. M.; Gillis, E. P.; Burke, M. D. Manuscript in preparation.
(16) Barder, T. E.; Walker, S. D.; Martinelli, J. R.; Buchwald, S. L. J. Am.
Chem. Soc. 2005, 127, 4685–4696.
(17) A large collection of MIDA boronates will soon be commercial.
JA8063759
9
J. AM. CHEM. SOC. VOL. 130, NO. 43, 2008 14085