Organic Letters
Letter
(2) (a) Brase, S.; Banert, K. Organic Azides: Syntheses and
̈
vinyl group is equatorial, whereas substrates from mannose give
the product with the vinyl group axially oriented; this can be
summarized as giving a 1,2-trans product. The cycloaddition is
normally a concerted process20 between the azide and alkene,
and this may imply that the forming piperidine needs to adopt a
boat or twist-boat conformation to enable the required orbital
overlap in the transition state. In this situation, substituents on
the forming six-membered ring could be eclipsed or close to
eclipsed. For the reaction from mannose substrates, a reaction
of the secondary allylic azide with the S configuration would
place the vinyl group close to a C−H bond, whereas reaction of
the R isomer would place the vinyl group close to the C−O
bond. Reaction of the S isomer would be faster for steric
reasons, and this would give rise to the axially oriented anomer.
Where galactose substrates are concerned, the reaction from
the R stereoisomer is faster than that from the S stereoisomer
because of the configurational change at C-2, and thus, the
anomeric selectivity is reversed. This rationale is summarized in
Figure 1.
Applications; Wiley-VCH: Weinheim, Germany, 2009. (b) Kadaba, P.
K.; Stevenson, P. J.; P-Nnane, I.; Damani, L. A. Bioorg. Med. Chem.
1996, 4, 165.
(3) Zhou, Y.; Murphy, P. V. Org. Lett. 2008, 10, 3777.
(4) Gagneux, A.; Winstein, S.; Young, W. G. J. Am. Chem. Soc. 1960,
82, 5956.
(5) For allylic azide rearrangement used in tandem with intra-
molecular Schmidt reactions, see: Liu, R.; Gutierrez, O.; Tantillo, D. J.;
́
Aube, J. J. Am. Chem. Soc. 2012, 134, 6528.
(6) For reviews of the application of intramolecular 1,3-dipolar
cycloaddition in targeted synthesis, see: (a) Nair, V.; Suja, T. D.
Tetrahedron 2007, 63, 12247. (b) Padwa, A. In 1,3-Dipolar
Cycloaddition Chemistry; Padwa, A., Ed.; Wiley-Interscience: New
York, 1984; Vol. 2, p 316.
(7) For a review of the applications of organic azides, including
alkene−azide cycloadditions, see: Brase, S.; Gil, C.; Knepper, K.;
̈
Zimmermann, V. Angew. Chem., Int. Ed. 2005, 44, 5188.
(8) For allylic azide rearrangement followed by intramolecular azide−
́
alkyne cycloaddition, see: Vekariya, R. H.; Liu, R.; Aube, J. Org. Lett.
2014, 16, 1844−47.
In summary, we have demonstrated that the allylic azide
rearrangement when coupled to the Huisgen azide−alkene
cycloaddition (or azide−alkyne cycloaddition) can be used
productively to define a highly diastereoselective annulation in
which two stereocenters are generated in a controlled manner.
Application of the reaction has been demonstrated by the
synthesis of iminosugars (polyhydroxylated piperidines), which
are of biomedical relevance.11 Further study of this ring-
forming approach is underway, and the outcomes of that work
will be reported in due course.21
(9) For allylic azide rearrangements followed by copper-promoted
intermolecular azide−alkene cycloaddition, see: Feldman, A. K.;
Colasson, B.; Sharpless, K. B.; Fokin, V. V. J. Am. Chem. Soc. 2005,
127, 13444.
(10) For intramolecular cycloaddition of primary allylic azides and
alkynes, see: Mishra, A.; Hutait, S.; Bhowmik, S.; Rastogi, N.; Roy, R.;
Batra, S. Synthesis 2010, 2010, 2731.
(11) For recent selected applications of iminosugars, see: (a) Clark,
N.; Metcalf, M. C.; Best, D.; Fleet, G. W. J.; Garman, S. C. Proc. Natl.
Acad. Sci. U. S. A. 2012, 109, 17400. (b) Ghisaidoobe, A. T.; van den
Berg, R. J. B. H. N.; Butt, S. S.; Strijland, A.; Donker-Koopman, W. E.;
Scheij, S.; van den Nieuwendijk, A. M. C. H.; Koomen, G.-J.; van
Loevezijn, A.; Leemhuis, M.; Wennekes, T.; van der Stelt, M.; van der
Marel, G. A.; van Boeckel, C. A. A.; Aerts, J. M. F. G.; Overkleeft, H. S.
J. Med. Chem. 2014, 57, 9096. (c) Lopez, O.; Qing, F.-L.; Pedersen, C.
M.; Bols, M. Bioorg. Med. Chem. 2013, 21, 4755. (d) Sanchez-
Fernandez, E. M.; Risquez-Cuadro, R.; Ortiz Mellet, C.; Garcia
Fernandez, J. M.; Nieto, P. M.; Angulo, J. Chem. - Eur. J. 2012, 18,
8527. (e) Decroocq, C.; Stauffert, F.; Pamlard, O.; Oulaidi, F.;
Gallienne, E.; Martin, O. R.; Guillou, C.; Compain, P. Bioorg. Med.
Chem. Lett. 2015, 25, 830−833.
(12) Skaanderup, P. R.; Poulsen, C. S.; Hyldtoft, L.; Jørgensen, M. R.;
Madsen, R. Synthesis 2002, 2002, 1721.
(13) (a) Bernet, B.; Vasella, A. Helv. Chim. Acta 1979, 62, 1990.
(b) Skaanderup, P. R.; Hyldtoft, L.; Madsen, R. Monatsh. Chem. 2002,
133, 467.
(14) HMBC in conjunction with COSY and HSQC experiments was
generally used to establish the connectivity in the molecules prepared.
(15) Kato, A.; Kato, N.; Adachi, I.; Hollinshead, J.; Fleet, G. W. J.;
Kuriyama, C.; Ikeda, K.; Asano, N.; Nash, R. J. J. Nat. Prod. 2007, 70,
993.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Crystallographic data for 32 (CIF)
Crystallographic data for 23α (CIF)
Experimental procedures and analytical data for com-
pounds, schemes and experimental section for the
preparation of 24 and 31, tables of NMR data, and
plots of chemical shift differences (PDF)
AUTHOR INFORMATION
Corresponding Author
■
(16) Fleet, G. W. J.; Namgoong, S. K.; Barker, C.; Baines, S.; Jacob,
G. S.; Winchester, B. Tetrahedron Lett. 1989, 30, 4439.
(17) Shilvock, J. P.; Wheatley, J. R.; Nash, R. J.; Watson, A. A.;
Notes
The authors declare no competing financial interest.
Griffiths, R. C.; Butters, T. D.; Muller, M.; Watkin, D. J.; Winkler, D.
̈
A.; Fleet, G. W. J. J. Chem. Soc., Perkin Trans. 1 1999, 2735.
(18) Kobayashi, Y.; Lee, J.; Tezuka, K.; Kishi, Y. Org. Lett. 1999, 1,
2177−2180.
ACKNOWLEDGMENTS
■
This research was supported by the Irish Research Council
(Ph.D. scholarship to L.M.) and NUI Galway (College of
Science Ph.D. scholarship to R.C.). This publication has also
emanated in part from research supported by Science
Foundation Ireland (SFI, 07/IN.1/B966) that was cofunded
under the European Regional Development Fund.
(19) Hoffmann, R. W. Chem. Rev. 1989, 89, 1841.
(20) Huisgen, R. J. Org. Chem. 1968, 33, 2291.
(21) For related previous work from our laboratory, see:
(a) McDonnell, C.; Cronin, L.; O’ Brien, J. L.; Murphy, P. V. J. Org.
Chem. 2004, 69, 3565. (b) Cronin, L.; Murphy, P. V. Org. Lett. 2005,
7, 2691. (c) O’Reilly, C.; O’Brien, C.; Murphy, P. V. Tetrahedron Lett.
2009, 50, 4427.
REFERENCES
■
(1) (a) Huisgen, R. Angew. Chem. 1963, 75, 604. (b) Huisgen, R.
Angew. Chem., Int. Ed. Engl. 1963, 2, 633.
D
Org. Lett. XXXX, XXX, XXX−XXX