to serve as a template for nonenzymatic transfer of genetic
information.6,7 Specifically, we report successful nonenzy-
matic oligomerization of RNA on a TNA template (Scheme
1), a process that models genetic takeover8 of a pre-RNA
by RNA.
Scheme 1. Nonenzymatic, Template-Directed Oligomerization
Reaction Conducted with Templates 1-3
Template 3 from Figure 2 shown; tC ) TNA-C, rG ) ribo-G,
all other residues ) DNA.
Three hairpin templates with varying numbers of TNA
residues were synthesized (Figure 2, left of panel) on an ABI-
394 oligonucleotide synthesizer and purified by 20% dena-
turing PAGE.9 Hairpin templates enable low concentrations
of template/primers to be used without interference of off-
template reactions.6f All three TNA-bearing templates were
Figure 2. Time course study of nonenzymatic oligomerization
reactions on 32P-end-labeled TNA bearing templates 1-3 (tC )
TNA-C, rG ) ribo-G, all other residues ) DNA). The extent of
oligomerization was assessed at 30 min, 1 h, 4 h, 12 h, 1 day, 3
days, and 10 days for each template (lanes 2-8, respectively). Lane
1 is the template only. Oligomerization conditions were: 1.2 M
NaCl, 200 mM 2,6-lutidine‚HCl pH 8.0, 0.5 µM template, 100 mM
2-MeImpG and 200 mM MgCl2, 5 °C. The oligomerization
procedure from refs 6f and 7d,h was followed.
(3) (a) Scho¨ning, K.-U.; Scholz, P.; Guntha, S.; Wu, X.; Krishnamurthy,
R.; Eschenmoser, A. Science 2000, 290, 1347. (b) Scho¨ning, K.-U.; Scholz,
P.; Wu, X. L.; Guntha, S.; Delgado, G.; Krishnamurthy, R.; Eschenmoser,
A. HelV. Chim. Acta 2002, 85, 4111. (c) Pallan, P. S.; Wilds, C. J.; Wawrzak,
Z.; Krishnamurthy, R.; Eschenmoser, A.; Egli, M. Angew. Chem., Int. Ed.
2003, 42, 5893.
(4) Pitsch, S.; Eschenmoser, A.; Gedulin, B.; Hui, S.; Arrhenius, G.
Origins Life EVol. Biosphere 1995, 25, 297.
(5) Herdewijn, P. Angew. Chem., Int. Ed. 2001, 40, 2249.
(6) For past work exploring nonenzymatic oligomerization on natural
nucleotide templates, see: (a) Inoue, T.; Orgel, L. E. J. Am. Chem. Soc.
1981, 103, 7666. (b) Joyce, G. F.; Visser, G. M.; VanBoeckel, C. A. A.;
VanBoom, J. H.; Orgel, L. E.; VanWestrenen, J. Nature 1984, 310, 602.
(c) Chen, C. B.; Inoue, T.; Orgel, L. E. J. Mol. Biol. 1985, 181, 271. (d)
Joyce, G. F.; Orgel, L. E. J. Mol. Biol. 1986, 188, 433. (e) Acevedo, O. L.;
Orgel, L. E. J. Mol. Biol. 1987, 197, 187. (f) Wu, T. F.; Orgel, L. E. J. Am.
Chem. Soc. 1992, 114, 317. (g) Hill, A. R., Jr.; Orgel, L. E.; Wu, T. F.
Origins Life EVol. Biosphere 1993, 23, 285. (h) Zielinski, M.; Kozlov, I.
A.; Orgel, L. E. HelV. Chim. Acta 2000, 83, 1678. (i) Kanavarioti, A.;
Bernasconi, C. F.; Baird, E. E. J. Am. Chem. Soc. 1998, 120, 8575. (j)
Kanavarioti, A.; Baird, E. E.; Hurley, T. B.; Carruthers, J. A.; Gango-
padhyay, S. J. Org. Chem. 1999, 64, 8323. (k) Kurz, M.; Gobel, K.; Hartel,
C.; Gobel, M. W. Angew. Chem., Int. Ed. Engl. 1997, 36, 842. (l) Hey, M.;
Hartel, C.; Gobel, M. W. HelV. Chim. Acta 2003, 86, 844.
(7) For past work exploring nonenzymatic oligomerization on nonstand-
ard nucleotide templates, see: (a) Rembold, H.; Robins, R. K.; Seela, F.;
Orgel, L. E. J. Mol. EVol. 1994, 38, 211. (b) Bohler, C.; Nielsen, P. E.;
Orgel, L. E. Nature 1995, 376, 578. (c) Ertem, G.; Ferris, J. P. Nature
1996, 379, 238. (d) Prakash, T. P.; Roberts, C.; Switzer, C. Angew. Chem.,
Int. Ed. Engl. 1997, 36, 1522. (e) Kozlov, I. A.; Politis, P. K.; Pitsch, S.;
Herdewijn, P.; Orgel, L. E. J. Am. Chem. Soc. 1999, 121, 1108. (f) Kozlov,
I. A.; Orgel, L. E. HelV. Chim. Acta 1999, 82, 1799. (g) Chaput, J. C.;
Switzer, C. J. Am. Chem. Soc. 2000, 122, 12866. (h) Chaput, J. C.; Switzer,
C. J. Mol. EVol. 2000, 51, 464. (i) Kozlov, I. A.; Zielinski, M.; Allart, B.;
Kerremans, L.; Van Aerschot, A.; Busson, R.; Herdewijn, P.; Orgel, L. E.
Chem.-Eur. J. 2000, 6, 151. (j) Hartel, C.; Gobel, M. W. HelV. Chim.
Acta 2000, 83, 2541. (k) Chaput, J. C.; Sinha, S.; Switzer, C. Chem.
Commun. 2002, 15, 1568.
found to promote guanosine 5′-phosphoro-2-methylimidazole
(2-MeImpG) oligomerization. As Figure 2 shows, oligomer-
ization products are apparent after 3 days of incubation and
continue to form up to day 10. The rates of oligomerization
in Figure 2 depend on TNA content. Whereas oligomeriza-
tion on template 1 (one TNA residue) appears to be all but
complete after 3-5 days, templates 2 (two TNA residues)
and 3 (seven contiguous TNA residues) require 5-10 days
to achieve maximum oligomerization. Past work on hairpins
appended with (rC)7 and (dC)5 templates showed the half-
lives for disappearance of the templates to be 0.837d and 3.0
h,6f respectively, for the oligomerization of 2-MeImpG. By
plotting the disappearance of templates 1, 2, and 3 when
incubated in the presence of 2-MeImpG, we estimate the
half-lives as 14, 37, and 53 h, respectively.
Oligomerization products may contain 2′,5′- phosphodi-
ester linkages, 3′,5′-linkages, or a combination of the two.
To determine the types of linkages present in our system,
the reaction products from all three templates were treated
with RNase T1.6f,7d,h The RNase T1 enzyme cleaves oligori-
bonucleotides specifically at the 3′-side of a 3′,5′- linked
guanosine residue while leaving 2′,5′-linkages untouched.
Figure 3 shows that RNase T1 treatment of oligomerization
products from all three templates resulted in the cleavage of
the first linkage formed to give the template plus a 3′-
phosphate residue (comparison of lanes 1 and 4). Thus, the
(8) Cairns-Smith, A. G. Genetic TakeoVer and the Mineral Origins of
Life; Cambridge University Press: Cambridge, 1982.
(9) N4-Benzoyl-1-{2′-O-[(2-cyanoethoxy)(diisopropylamino)-phosphino]-
3′-O-[(4,4′-dimethoxytriphenyl)methyl]-R-L-threofuranosyl}-cytosine was
synthesized according to the reported procedure.3b Templates were synthe-
sized on an ABI 394 DNA synthesizer using standard protocols. Guanosine
5′-phosphoro-2-methyl-imidazolide was prepared from guanosine 5′-mono-
phosphate according to the reported procedure: Joyce, G. F.; Inoue, T.;
Orgel, L. E. J. Mol. Biol. 1984, 176, 279.
5810
Org. Lett., Vol. 8, No. 25, 2006