604
MIKHAILOV et al.
fl
Russ. J. Gen. Chem., 2016, vol. 86, no. 2, p. 406. doi
10.1134/S1070363216020341
acetonitrile, 221 (3.82), 275 (1.73), 296 (0.58), λ
m ax
336 (φ 0.62). Found, %: C 60.58; H 6.47; N 10.53.
С14H18N2O4. Calculated, %: C 60.42; H 6.52; N 10.66.
7. Mikhailov, I.E., Vikrishchuk, N.I., Popov, L.D.,
Dushenko, G.A., Beldovskaya, A.D., Revinskii, Yu.V.,
and Minkin, V.I., Russ. J. Gen. Chem., 2016, vol. 86,
no. 5, p. 1054. doi 10.1134/S1070363216050121
8. Mikhailov, I.E., Popov, L.D., Vikrishchuk, N.I.,
Beldovskaya, A.D., Revinskii, Yu.V., Dushenko, G.A.,
and Minkin, V.I., Russ. J. Gen. Chem., 2015, vol. 85,
no. 1, p. 203. doi 10.1134/S1070363215010363
9. Mikhailov, I.E., Svetlichnyi, D.A., Burov, O.N.,
Revinskii, Yu.V., Dushenko, G.A., and Minkin, V.I.,
Russ. J. Gen. Chem., 2015, vol. 85, no. 5, p. 1074. doi
10.1134/S1070363215050126
IR spectra were recorded on a Varian Excalibur
3100 FT-IR spectrometer in Nujol. H (250.13 MHz)
1
and 13C (62.90 MHz) NMR spectra were obtained on a
Bruker DPX-250 instrument. Absorption and fluore-
scence spectra were measured on a Cary Scan 100
spectrophotometer and a Cary Eclipse fluorescence
spectrophotometer, respectively. The fluorescence
quantum yields were determined relative to anthracene
in acetonitrile [18].
10. Artyushkina, Yu.M., Mikhailov, I.E., Burov, O.N.,
Dushenko, G.A., Mikhailova, O.I., Revinskii, Yu.V.,
and Minkin, V.I., Russ. J. Gen. Chem., 2016, vol. 86,
no. 12, p. 2702. doi 10.1134/S1070363216120239
11. Mikhailov, I.E., Artyushkina, Yu.M., Dushenko, G.A.,
Mikhailova, О.I., Revinskii, Yu.V., Burov, О.N., and
Minkin, V.I., Russ. J. Org. Chem., 2016, vol. 52, no. 11,
p. 1700. doi 10.1134/S1070428016110270
12. Gnanasekaran, K.K., Nammalwar, B., Murie, M., and
Bunce, R.A., Tetrahedron Lett., 2014, vol. 55, no. 50,
p. 6776. doi 10.1016/j.tetlet.2014.10.028
13. Sarshira, E.M., Hamada, N.M., Moghazi, Y.M., and
Abdelrahman, M.M., J. Heterocycl. Chem., 2016,
vol. 53, no. 6, p. 1970. doi 10.1002/jhet.2516
14. Fan, Y., He, Y., Liu, X., Hu, T., Ma, H., Yang, X.,
Luo, X., and Huang, G., J. Org. Chem., 2016, vol. 81,
no. 15, p. 6820. doi 10.1021/acs.joc.6b01135
15. Jaiswal, R.K., Parmar, S.S., Singh, Sh.P., and Barthwal, J.P.,
J. Heterocycl. Chem., 1979, vol. 16, no. 3, p. 561. doi
10.1002/jhet.5570160331
16. Maillard, Ja., Vincent, M., and Vo-Van-Tri, Bull. Soc.
Chim., 1966, no. 1, p. 376.
17. Mandhane, P.G., Joshi, R.S., Khan, W., and Gill, Ch.H.,
J. Korean Chem. Soc., 2011, vol. 55, no. 4, p. 656. doi
10.5012/jkcs.2011.55.4.656
ACKNOWLEDGMENTS
This study was financially supported by the Russian
Foundation for Basic Research (project no. 16-03-
00095a).
REFERENCES
1. Boström, J., Hogner, A., Llinas, A., Wellner, E., and
Plowright, A.T., J. Med. Chem., 2012, vol. 55, no. 5,
p. 1817. doi 10.1021/jm2013248
2. Shirota, Y. and Kageyama, H., Chem. Rev., 2007,
vol. 107, no. 4, p. 953. doi 10.1021/cr050143+
3. Jha, K.K., Samad, A., Kumar, Ya., Shaharyar, M.,
Khosa, R.L., Jain, Ja., Kumar, V., and Singh, P., Eur. J.
Med. Chem., 2010, vol. 45, p. 4963. doi 10.1016/
j.ejmech.2010.08.003
4. Murty, M.S.R., Penthala, R., Buddana, S.K., Praka-
sham, R.S., Das, P., Polepalli, S., Jain, N., and Bojja, S.,
Med. Chem. Res., 2014, vol. 23, p. 4579. doi 10.1007/
s00044-014-1025-x
5. Beldovskaya, A.D., Dushenko, G.A., Vikrishchuk, N.I.,
Popov, L.D., Revinskii, Yu.V., Mikhailov, I.E., and
Minkin, V.I., Russ. J. Org. Chem., 2013, vol. 49, no. 12,
p. 1861. doi 10.1134/S1070428013120312
6. Mikhailov, I.E., Artyushkina, Yu.M., Burov, O.N.,
Dushenko, G.A., Revinskii, Yu.V., and Minkin, V.I.,
18. Beldovskaya, A.D., Dushenko, G.A., Vikrishchuk, N.I.,
Popov, L.D., Revinskii, Y.V., and Mikhailov, I.E., Russ.
J. Gen. Chem., 2013, vol. 83, no. 11, p. 2075. doi
10.1134/S1070363213110200
RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 88 No. 3 2018