Organic Letters
Letter
Lewis acid catalyst. This cyclization generates the cationic
species CC1, an intermediate common to all three reaction
pathways.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
When a type 1 substrate is treated with stoichiometric
amounts of a metal(III) halide, CC1 is trapped by the halide
anion in a highly diastereoselective manner, generating type 2
products. Halide addition in related cation−π cyclizations is
proposed to occur through a concerted mechanism, installing
the halide trans to the new C−C bond.19 The enolate is then
protonated to give products 2 as a 1:1 mixture of
diastereomers, epimeric at the α-position of the β-ketoester.
The spirocyclic products 4 are produced when intermediate
CC1 undergoes two sequential [1,2]-Wagner−Meerwein
hydride shifts (cf. Scheme 2),12 eventually generating stabilized
tertiary carbocation CC2, which undergoes Nazarov cycliza-
tion to give spirocycles 4 (cf. Scheme 1, eq 2). Consistent with
this mechanistic proposal, aryl enone 3 can be isolated if the
reaction is stopped before the cascade is complete.
Furthermore, if 3 is resubjected to the reaction conditions, it
cyclizes.
[4.3.1] Bridged bicyclic products 6 are formed when
intermediate CC1 engages in an intramolecular Friedel−Crafts
alkylation. This occurs when CC1 is a tertiary carbocation, and
the [1,2]-hydride shift pathway is disfavored relative to the
direct capture of the stabilized cation with the electron-rich
aromatic ring.
With these results, we demonstrate that alkylidene β-
ketoesters bearing pendent olefins can engage in three distinct
reaction pathways, each of which can be accessed with
complete selectivity. In two cases, a novel cationic cascade
converts a simple aromatic precursor into an unusual, three-
dimensional carbocyclic scaffold containing an all-carbon
quaternary center (i.e., 4 and 6). In the synthesis of spirocycles
4, two new C−C bonds are formed at the same carbon of the
reactant (i.e., the β-position of alkylidene β-ketoesters 1). In
the assembly of [4.3.1] bridged bicyclic systems 6, two new
C−C bonds are formed diastereoselectively, in a formal [5 + 2]
cyclization process.20 These cyclizations represent expansions
to the canon of cation-olefin and polyene cyclizations,
producing irregular patterns of ring fusions rather than the
typical, linear-fused polycyclic systems.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We are grateful to the National Science Foundation (CHE-
1565813) for funding this research. We also thank William W.
Brennessel (University of Rochester) for X-ray crystallography
and Kevin Well (University of Rochester Medical Center) for
high-resolution mass-spectrometric analysis.
REFERENCES
■
(1) (a) Johnson, W. S.; Gravestock, M. B.; Parry, R. J.; Myers, R. F.;
Bryson, T. A.; Miles, D. H. J. Am. Chem. Soc. 1971, 93, 4330.
(b) Johnson, W. S. Acc. Chem. Res. 1968, 1, 1−8. (c) Johnson, W. S.
Bioorg. Chem. 1976, 5, 51−98.
(2) (a) Sutherland, J. K.; Polyene Cyclizations. Comprehensive
Organic Synthesis; Pergamon: 1991; pp 341−377. (b) Nicolaou, K. C.;
Montagnon, T.; Snyder, S. A. Chem. Commun. 2003, 551−564.
(c) Yoder, R. A.; Johnston, J. N. Chem. Rev. 2005, 105, 4730−4756.
(d) Eschenmoser, A.; Arigoni, D. Helv. Chim. Acta 2005, 88, 3011−
3050. (e) Ungarean, C. N.; Southgate, E. H.; Sarlah, D. Org. Biomol.
Chem. 2016, 14, 5454−5467. (f) Peng, X.-R.; Lu, S.-Y.; Shao, L.-D.;
Zhou, L.; Qiu, M.-H. J. Org. Chem. 2018, 83, 5516−5522. (g) Snyder,
S. A.; Levinson, A. M.; Polyene Cyclizations. Comprehensive Organic
Synthesis, 2nd ed.; Pergamon: 2014; pp 268−292. (h) Barrett, A.; Ma,
T.-K.; Mies, T. Synthesis (Stuttg) 2018, 50, A−P.
(3) (a) Ishihara, K.; Nakamura, S.; Yamamoto, H. J. Am. Chem. Soc.
1999, 121, 4906−4907. (b) Ishihara, K.; Ishibashi, H.; Yamamoto, H.
J. Am. Chem. Soc. 2002, 124, 3647−3655. (c) Ishibashi, H.; Ishihara,
K.; Yamamoto, H. J. Am. Chem. Soc. 2004, 126, 11122−11123.
(4) Surendra, K.; Corey, E. J. J. Am. Chem. Soc. 2012, 134, 11992−
11994.
(5) (a) Van Tamelen, E. E. Acc. Chem. Res. 1968, 1, 111−120.
(b) Van Tamelen, E. E. Acc. Chem. Res. 1975, 8, 152−158.
(c) Goldsmith, D. J.; Phillips, C. F. J. Am. Chem. Soc. 1969, 91,
5862−5870. (d) Corey, E. J.; Lin, S. J. Am. Chem. Soc. 1996, 118,
8765−8766. (e) Corey, E. J.; Staas, D. D. J. Am. Chem. Soc. 1998, 120,
3526−3527.
(6) (a) Johnson, W. S.; Kinnel, R. B. J. Am. Chem. Soc. 1966, 88,
3861−3862. (b) Johnson, W. S. Tetrahedron 1991, 47, xi−l.
(c) Johnson, W. S. Angew. Chem., Int. Ed. Engl. 1976, 15, 9−17.
(d) Zhao, Y.-J.; Chng, S.-S.; Loh, T.-P. J. Am. Chem. Soc. 2007, 129,
492−493.
ASSOCIATED CONTENT
■
S
* Supporting Information
The Supporting Information is available free of charge on the
(7) (a) Zhao, Y.-J.; Li, B.; Tan, L.-J. S.; Shen, Z.-L.; Loh, T.-P. J. Am.
Chem. Soc. 2010, 132, 10242−10244. (b) Fan, L.; Han, C.; Li, X.;
Yao, J.; Wang, Z.; Yao, C.; Chen, W.; Wang, T.; Zhao, J. Angew.
Chem., Int. Ed. 2018, 57, 2115−2119.
(8) Recently, examples of polyene cyclizations initiated by
halogenation have also been reported; see: (a) Arnold, A. M.;
Preparation of alkylidene β-ketoester starting materials,
general procedure for halide trapped products, general
procedure for the formation of spirocyclic products,
optimization of formal [5 + 2], general procedure for
̈
Pothig, A.; Drees, M.; Gulder, T. J. Am. Chem. Soc. 2018, 140, 4344−
353. (b) Snyder, S. A.; Treitler, D. S.; Brucks, A. P. J. Am. Chem. Soc.
2010, 132, 14303−14314.
Accession Codes
(9) Stadler, P. A.; Eschenmoser, A.; Schinz, H.; Stork, G. Helv. Chim.
Acta 1957, 40, 2191.
crystallographic data for this paper. These data can be obtained
Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
(10) Cation-olefin cyclization methods are not often used to
synthesize bridged and spiro-fused ring systems, but some interesting
examples have been reported: (a) Pronin, S. V.; Shenvi, R. A. Nat.
Chem. 2012, 4, 915−920. (b) Desjardins, S.; Maertens, G.; Canesi, S.
Org. Lett. 2014, 16, 4928−4931. (c) Suzuki, K.; Yamakoshi, H.;
Nakamura, S. Chem. - Eur. J. 2015, 21, 17605−17609 (allyl silanes
D
Org. Lett. XXXX, XXX, XXX−XXX