S. Brajeul et al. / Tetrahedron Letters 48 (2007) 5597–5600
5599
MeO
O
OMe
In conclusion, we have shown that the sulfonium salts
can be usefull derivatives for the introduction of prenyl,
geranyl, and isolavandulyl groups onto benzoylphloro-
glucinol derivatives. The reaction occurs in nearly neu-
tral conditions, unlike other methods, and avoids a
multi-step sequence, as for Claisen rearrangement.
Moreover, the reagents can be considered as synthetic
equivalents for pyrophosphates operating during the
biosynthetic process,1a when the unprotected triphenol
is used. The method is particularly convenient for ether
derivatives of the phloroglucinol nucleus. The use of this
approach, as well as its evaluation by comparison with
other conditions and electrophiles, is in progress with
the objective of biomimetic natural products synthesis
in these series.
(a)
5 + 4
OMe
11 (15%)
Scheme 4. Reagents and conditions: (a) 4 (2.5 equiv), Hunig’s base
(5 equiv.), toluene, 80 °C, 16 h.
¨
ated adduct 9 in 51% yield, in a smooth uncatalyzed
Friedel–Crafts alkylation reaction. Due to some decom-
position (probable formation of isoprene), use of an
excess of sulfonium salt was necessary in this case. The
debenzoylated derivative was also isolated in 15% yield.22
Introduction of a geranyl group, using sulfonium salt 4,
turned to be more difficult, but a marupone analog 11
has been obtained in 15% yield from 5 (Scheme 4).
References and notes
It should be mentioned that this method could not be
used for the transfer of a group that is not of allylic nat-
ure, such as a lavandulyl.23
1. (a) Ciochina, R.; Grossman, R. B. Chem. Rev. 2006, 106,
3963–3986; (b) Singh, I. P.; Bharate, S. B. Nat. Prod. Rep.
2006, 23, 558–591.
Finally we prepared an isolavandulyl sulfonium deriva-
tive from the corresponding bromo compound, accord-
ing to Scheme 5. The process, for the synthesis of the
allylic bromide, consists essentially in an adaptation of
known methods.24,25
2. (a) Cuesta-Rubio, O.; Piccinelli, A. L.; Rastrelli, L. In
Studies in Natural Product Chemistry (Bioactive Natural
Products, Part L); Atta-ur-Rahman, Ed.; Elsevier:
Amsterdam, 2005; Vol. 32, pp 671–720; (b) Baggett, S.;
Mazzola, E. P.; Kennelly, E. J. In Studies in Natural
Product Chemistry (Bioactive Natural Products, Part L);
Atta-ur-Rahman, Ed.; Elsevier: Amsterdam, 2005; Vol.
32, pp 721–771.
3. Kumar, V.; Karunaratne, V.; Meegalle, M. R.; Sanath, K.
Phytochemistry 1989, 28, 1278–1279.
4. de Oliveira, C. M. A.; Porto, A. M.; Bittrich, V.; Vencato,
I.; Marsaioli, A. J. Tetrahedron Lett. 1996, 37, 6427–
6430.
Treatment of benzoylphloroglucinol derivative 5 with an
excess of the new sulfonium salt 12 (Scheme 6), in the
conditions used previously, afforded the desired substi-
tuted derivative 13 in 30% yield, accompanied again
by deacylation product 14 in 20% yield.
This last result represents the first example of the intro-
duction of an isolavandulyl framework onto a phloro-
glucinol derivative.
5. Dias, J. D. P.; Gottlieb, O. R.; Mesquita, A. A. L.
Phytochemistry 1974, 13, 1953–1955.
6. Seo, E.-K.; Wall, M. E.; Wani, M. C.; Navarro, H.;
Mukherjee, R.; Farnsworth, N. R.; Kinghorn, A. D.
Phytochemistry 1999, 52, 669–674.
7. Porto, A. L. M.; Machado, S. M. F.; de Oliveira, C. M.
A.; Bittrich, V.; Amaral, M. do C. E.; Marsaioli, A. J.
Phytochemistry 2000, 55, 755–768.
O
O
O
OH
O
O
(b)
(a)
(c)
´
8. Roux, D.; Hadi, H. A.; Thoret, S.; Guenard, D.; Thoison,
´
O.; Pa¨ıs, M.; Sevenet, T. J. Nat. Prod. 2000, 63, 1070–
BF4
+
S
1076.
9. (a) Hamed, W.; Brajeul, S.; Mahuteau-Betzer, F.; Thoi-
son, O.; Mons, S.; Delpech, B.; Hung, N. V.; Sevenet, T.;
Marazano, C. J. Nat. Prod. 2006, 69, 774–777; (b)
Nuhant, P.; David, M.; Pouplin, T.; Delpech, B.; Mara-
zano, C. Org. Lett. 2007, 9, 287–289.
10. Trost, B. M.; Saulnier, M. G. Tetrahedron Lett. 1985, 26,
123–126.
11. Araki, S.; Manabe, S.; Butsugan, Y. Chem. Lett. 1982,
797–800.
Br
(e)
(d)
12
Scheme 5. Reagents and conditions: (a) Prenyl bromide, EtONa, 0 °C
overnight, 96% yield; (b) HCHO (37% in H2O), K2CO3, H2O, 71%
yield; (c) MeLi, Et2O, 70% yield; (d) PBr3 (0.5 equiv), pyridine
(0.1 equiv), Et2O, 75% yield; (e) 1a (1 equiv), AgBF4, CH2Cl2,
quantitative yield.
12. Bigi, F.; Carloni, S.; Maggi, R.; Muchetti, C.; Rastrelli,
M.; Sartori, G. Synthesis 1998, 301–304.
13. See, for example: (a) Iikubo, K.; Ishikawa, Y.; Ando, N.;
Umezawa, K.; Nishiyama, S. Tetrahedron Lett. 2002, 43,
291–293; (b) Takaoka, S.; Nakade, K.; Fukuyama, Y.
Tetrahedron Lett. 2002, 43, 6919–6923.
MeO
O
OMe
MeO
OMe
(a)
+
5 + 12
MeO
MeO
14. see, for example: (a) Riedl, W. Chem. Ber. 1952, 85, 692–
710; (b) Meikle, T.; Stevens, R. J. Chem. Soc., Perkin
Trans. 1 1978, 1303–1312; For prenylation in presence of a
strongly basic ion-exchange resin, see: (c) Collins, M.;
Laws, D. R. J. J. Chem. Soc., Perkin Trans. 1 1973, 2013–
2015.
14 (20%)
13 (30%)
Scheme 6. Reagents and conditions: (a) 12 (2.5 equiv), Hunig’s base
¨
(5 equiv), toluene, 80 °C, 16 h.