608
M. Kidwai et al. · Solvent-Free Synthesis of 2,4,6-Triaryl Pyridines
◦
Method B: Microwave assisted solventless synthesis
3c: M. p. 193 – 195 C [15] (CHCl3-MeOH). – IR (KBr
pellets): ν = 3065 (C–H), 1598 (C=N), 1542 (C=C) cm−1. –
A mixture of neat reactants, 3-(1,3-benzodioxol-5-yl)-
1-(4-bromophenyl)-2-propen-1-one 1 (3.32 g, 0.01 mol),
α-methyl-ketone 2a – f (0.01 mol) and ammonium acetate
(1.54 g, 0.02 mol) was taken in an Erlenmeyer flask and
irradiated under microwaves at an interval of 20 sec. The
progress of reaction was monitored by TLC examination.
Upon completion of the reaction, the mixture was cooled,
and methanol was added. During standing at 10 ◦C, a sticky
solid separated which was crystallised from a suitable solvent
to afford products 3a – f in high yield.
1H NMR (60 MHz, CDCl3): δ = 6.0 (s, 2H, OCH2O), 7.0
(s, 2H, pyridyl), 7.3 – 8.3 (m, 11H, Ar-H).
◦
3d: M. p. 160 – 162 C [16] (CHCl3-EtOH). – IR (KBr
pellets): ν = 3068 (C–H), 1599 (C=N), 1543 (C=C) cm−1. –
1H NMR (60 MHz, CDCl3): δ = 2.4 (s, 3H, CH3), 6.0 (s,
2H, OCH2O), 6.9 (s, 2H, pyridyl), 7.2 – 8.1 (m, 11H, Ar-H).
3e: M. p. 122 – 124 ◦C (CHCl3-EtOH). – IR (KBr
pellets): ν = 3425 (OH), 3062 (C–H), 1598 (C=N),
1544 (C=C) cm−1. – H NMR (60 MHz, CDCl3): δ = 5.8
1
(s, 1H, OH), 6.0 (s, 2H, OCH2O), 6.8 (s, 2H, pyridyl), 7.1 –
8.1 (m, 11H, Ar-H).
◦
3a: M. p. 136 – 138 C [18] (CHCl3-C6H12). – IR (KBr
pellets): ν = 3070 (C–H), 1599 (C=N), 1543 (C=C) cm−1. –
1H NMR (60 MHz, CDCl3): δ = 5.9 (s, 2H, OCH2O), 7.0
(s, 2H, pyridyl), 7.2 – 8.1 (m, 12H, Ar-H).
3f: M. p. 190 – 192 ◦C (CHCl3-C6H12). – IR (KBr
pellets): ν = 3143 (NH2), 3071 (C–H), 1599 (C=N),
1543 (C=C) cm−1. – H NMR (60 MHz, CDCl3): δ = 5.9
1
◦
(s, 2H, OCH2O), 4.2 (brs, 2H, NH2), 6.8 (s, 2H, pyridyl),
7.0 – 8.1 (m, 11H, Ar-H).
3b: M. p. 235 – 238 C [14] (CHCl3-MeOH). – IR (KBr
pellets): ν = 3060 (C–H), 1598 (C=N), 1543 (C=C) cm−1. –
1H NMR (60 MHz, CDCl3): δ = 6.0 (s, 2H, OCH2O), 7.1
(s, 2H, pyridyl), 7.4 – 8.3 (m, 11H, Ar-H).
[10] J. H. Archibald, G. Bradley, A. Opalko, T. J. Ward, J. C.
White, C. Ennis, N. B. Shepperson, J. Med. Chem. 33,
646 (1990).
[11] C. E. Sunkel, M. F. de Casa-Juana, L. Santos, M. M.
Gomez, M. Villarroya, M. A. Gonzalez-Morales, J. G.
Priego, M. P. Ortega, J. Med. Chem. 33, 3205 (1990).
[12] T. Kobayashi, M. Nitta, Chem. Lett. 1549 (1986).
[13] R. L. Frank, R. P. Seven, J. Am. Chem. Soc. 71, 2629
(1949).
[1] W. Xie, Y. Jin, P. G. Wang, Chemtech. 292, 23 (1999).
[2] D. C. Dittmer, Chem. and Ind. 779 (1997).
[3] R. S. Varma, Green Chem. 1, 43 (1999).
[4] M. Kidwai, S. Rastogi, R. Venkataramanan, Bull.
Chem. Soc. Jpn. 761, 203 (2003).
[5] M. Kidwai, P. Sapra, K. R. Bhushan, P. Misra, Synthesis
10, 1509 (2001).
[6] M. Kidwai, S. Saxena, R. Mohan, R. Venkataramanan,
J. Chem. Soc. Perkin Trans. I, 1845 (2002).
[7] M. D. Ankhiwala, M. V. Hathi, J. Indian Chem. Soc. 71,
587 (1994).
[14] R. S. Tewari, A. K. Dubey, Indian J. Chem. 19B, 153
(1980).
[15] P. S. Kendurkar, R. S. Tewari, Z. Naturforsch 29b, 552
(1974).
[8] A. M. Van Leusen, J. W. Terpestra, Tetrahedron Lett. 22,
5097 (1981).
[16] A. R. Katritzky, A. A. A. Abdel-Fattah, D. O. Ty-
moshenko, S. A. Essawy, Synthesis 12, 2114 (1999).
[17] D. Stuerga, P. Gaillard, Tetrahedron 52, 5505 (1996).
[9] H. Shirai, K. Hanabusa, Y. Takahashi, F. Mizobe,
K. Hanada, Jap. Pat. 93126541 (1993); Chem. Abstr.
122, 178410 (1995).
Brought to you by | University of Sydney
Authenticated
Download Date | 10/25/15 1:04 AM