ORGANIC
LETTERS
2003
Vol. 5, No. 10
1765-1768
Synthesis of Carbocyclic and
Heterocyclic Fused Quinolines by
Cascade Radical Annulations of
Unsaturated N-Aryl Thiocarbamates,
Thioamides, and Thioureas
Wu Du and Dennis P. Curran*
Department of Chemistry, UniVersity of Pittsburgh, Pittsburgh, PennsylVania 15260
Received March 11, 2003
ABSTRACT
Tandem radical cyclizations of suitably substituted N-aryl thiocarbamates, thioamides, and thioureas are induced by exposure to tris(trimethylsilyl)-
silane (TTMSH) and UV light and provide furoquinolines, isofuroquinolines, cyclopentaquinolines, indoloquinolines, and related ring systems.
The intermediacy of an r-thioalkylamino radical, which is the synthetic equivalent of an imidoyl radical, is invoked.
Annulation reactions of imidoyl radicals 1 provide powerful
ways to make an assortment of fused quinolines 2 (Figure
1).1-3 In turn, these imidoyl radicals can be formed either
by radical additions to isonitriles or from imidoyl halides
and related radical precursors.4 R-Thioaminoalkyl radicals
4 should be readily available from thioamides 3, and they
can be considered as synthetic equivalents of imidoyl radicals
1 since elimination of the thiol may occur either during or
after cascade reactions of 4. Bachi pioneered the use of such
radicals to make assorted heterocycles in the early 1990s.5
Fukuyama’s two recent indole syntheses provide striking
examples of the power of radical cyclizations of both imidoyl
radicals and their equivalent R-thioaminoalkyl radicals.6
In this Letter, we show that cascade radical annulations
of readily available thiocarbamates 5a, thioamides 5b, and
thioureas 5c provide direct routes to carbocyclic and
heterocyclic fused quinolines 6a-c (Scheme 1). These
reactions complement existing imidoyl radical methods by
making the same products from different precursors. More
importantly, they also provide access to products that are
not readily made through imidoyl radical chemistry either
(1) Johnson, C. D. In Rodd’s Chemistry of Carbon Compounds;
Sainsbury, M., Ed.; Elsevier: Amsterdam, 1998; Vol. IV, pp 129-161.
(2) (a) Josien, H.; Ko, S. B.; Bom, D.; Curran, D. P. Chem. Eur. J. 1998,
4, 67-83. (b) de Frutos, O.; Curran, D. P. J. Comb. Chem. 2000, 2, 639-
649. (c) Curran, D. P.; Josien, H.; Bom, D.; Gabarda, A.; Du, W. In The
Camptothecins: Unfolding their Anticancer Potential; Liehr, J. G., Giov-
anella, B. C., Verschraegen, C. F., Eds.; New York Academy of Sciences:
New York, 2000; Vol. 922. (d) Gabarda, A. E.; Du, W.; Isarno, T.;
Tangirala, R. S.; Curran, D. P. Tetrahedron 2002, 58, 6329-6341. (e) Luo,
Z. Y.; Zhang, Q. S.; Oderaotoshi, Y.; Curran, D. P. Science 2001, 291,
1766-1769. (f) Curran, D. P.; Du, W. Org. Lett. 2002, 4, 3215-3218.
(3) (a) Nanni, D.; Pareschi, P.; Rizzoli, C.; Sgarabotto, P.; Tundo, A.
Tetrahedron 1995, 51, 9045-9062. (b) Nanni, D.; Pareschi, P.; Tundo, A.
Tetrahedron Lett. 1996, 37, 9337-9340. (c) Leardini, R.; Nanni, D.;
Pareschi, P.; Tundo, A.; Zanardi, G. J. Org. Chem. 1997, 62, 8394-8399.
(d) Leardini, R.; Nanni, D.; Tundo, A.; Zanardi, G. Tetrahedron Lett. 1998,
39, 2441-2442. (e) Nanni, D.; Calestani, G.; Leardini, R.; Zanardi, G. Eur.
J. Org. Chem. 2000, 707-711. (f) Leardini, R.; Nanni, D.; Zanardi, G. J.
Org. Chem. 2000, 65, 2763-2772.
(4) Reviews: (a) Ryu, I.; Sonoda, N.; Curran, D. P. Chem. ReV. 1996,
96, 177-194. (b) Nanni, D. In Radicals in Organic Synthesis, 1st ed.;
Renaud, P., Sibi, M. P., Eds.; Wiley-VCH: Weinheim, Germany, 2001;
Vol. 2, pp 44-61. (c) Zard, S. Z. In Radicals in Organic Synthesis, 1st ed.;
Renaud, P., Sibi, M. P., Eds.; Wiley-VCH: Weinheim, Germany, 2001;
Vol. 1, pp 91-108.
(5) (a) Bachi, M. D.; Bosch, E. J. Org. Chem. 1992, 57, 4696-4705.
(b) Bachi, M. D.; Balanov, A.; Barner, N.; Bosch, E.; Denenmark, D.;
Mizhiritskii, M. Pure Appl. Chem. 1993, 65, 595-601.
10.1021/ol0344319 CCC: $25.00 © 2003 American Chemical Society
Published on Web 04/15/2003