1868 J ournal of Medicinal Chemistry, 2003, Vol. 46, No. 10
Prasad et al.
(4) Hoyer, D.; Bell, G. I.; Berelowitz, M.; Epelbaum, J .; Feniuk, W.;
Humphrey, P. P. A.; O′Carroll, A. -M.; Patel, Y. C.; Schonbrunn,
A.; Taylor, J . E.; Reisine, T. Classification and Nomenclature of
Somatostatin Receptors. Trends Pharmacol. Sci. 1995, 16, 86-
88.
Some Crystalline Fluorine-Containing Organic Compounds.
Struct. Chem. 1994, 5, 383-397. (c) Howard, J . A. K.; Hoy, V.
J .; O’Hagan, D.; Smith, G. T. How Good is Fluorine as
a
Hydrogen Bond Acceptor? Tetrahedron 1996, 52, 12613-12622.
(22) O’Neill, B. M.; Ratto, J . E.; Good, K. L.; Tahmassebi. D. C.;
Helquist, S. A.; Morales, J . C.; Kool, E. T. A Highly Effective
Nonpolar Isostere of Deoxyguanosine: Synthesis, Structure,
Stacking, and Base Pairing. J . Org. Chem. 2002, 67, 5869-5875
and references therein.
(23) Rozovsky, S.; J ogl, G.; Tong, L.; McDermott, A. E. Solution-state
NMR Investigations of Triosephosphate Isomerase Active Site
Loop Motion: Ligand Release in Relation to Active Site Loop
Dynamics. J . Mol. Biol. 2001, 310, 271-280.
(24) See also: (a) Plenio, H.; Diodone, R. On the Protonation of Fluoro
Cryptands and the Possibility of CF‚‚‚HN+ Hydrogen Bonds.
Chem. Ber. 1997, 130, 633-640. (b) Nangia, A. Packing Simi-
larities in Organic Crystals with C-H/C-F Exchange. A Data-
base Analysis of CH3/CF3 Pairs. New J . Chem. 2000, 24, 1049-
1055. (c) Xiao, G.; Parsons, J . F.; Tesh, K.; Armstrong, R. N.;
Gilliland, G. L. Conformational Changes in the Crystal Structure
of Rat Glutathione Transferase M1-1 with Global Substitution
of 3-Fluorotyrosine for Tyrosine. J . Mol. Biol. 1998, 281, 323-
339.
(25) Barberich, T. J .; Rithner, C. D.; Miller, S. M.; Anderson, O. P.;
Strauss, S. H. Significant Inter- and Intramolecular O-H‚‚‚FC
Hydrogen Bonding. J . Am. Chem. Soc. 1999, 121, 4280-4281.
(26) Krueger, P. J .; Mettee, H. D. Spectroscopic Studies of Alcohols.
I. Methanol-base Adducts in Dilute CCl4 Solution. Can. J . Chem.
1964, 42, 288-293.
(27) For other singular examples of fluorine acting as a H-bond
acceptor, see: (a) Batsanov, A. S.; Collings, J . C.; Howard, J . A.
K.; Marder, T. B. Octafluoronaphthalene-1,8-diaminonaphtha-
lene (1/1). Acta Crystallogr., Sect. E 2001, E57, 950-952. (b)
Dubowchik, G. M.; Vrudhula, V. M.; Dasgupta, B.; Ditta, J .;
Chen, T.; Sheriff, S.; Sipman, K.; Witmer, M.; Tredup, J .; Vyas,
D. M.; Verdoorn, T. A.; Bollini, S.; Vinitsky, A. 2-Aryl-2,2-
difluoroacetamide FKBP12 Ligands: Synthesis and X-ray Struc-
tural Studies. Org. Lett. 2001, 3, 3987-3990. (c) Takemura, H.;
Kon, N.; Yasutake, M.; Nakashima, S.; Shinmyozu, T.; Inazu,
T. The C-F...Cation Interaction: An Ammonium Complex of a
Hexafluoro Macrocyclic Cage Compound. Chem.-Eur. J . 2000,
6, 2334-2337.
(28) Kim, C.-Y.; Chang, J . S.; Doyon, J . B.; Baird, T. T., J r.; Fierke,
C. A.; J ain, A.; Christianson, D. W. Contribution of Fluorine to
Protein-Ligand Affinity in the Binding of Fluoroaromatic
Inhibitors to Carbonic Anhydrase II. J . Am. Chem. Soc. 2000,
122, 12125-12134.
(29) Atoji, M.; Lipscomb, W. N. The Crystal Structure of Hydrogen
Fluoride. Acta Crystallogr. 1954, 7, 173-175. (b) Pauling, L. The
Nature of the Chemical Bond, 3rd ed.; Cornell University
Press: Ithaca, NY, 1960; pp 459-464.
(30) Takahashi, L. H.; Radhakrishnan, R.; Rosenfield, R. E. J r.,
Meyer, E. F. J r., Trainor, D. A. Crystal Structure of the Covalent
Complex Formed by a Peptidyl R,R-difluoro-â-keto Amide with
Porcine Pancreatic Elastase at 1.78.ANG. Resolution. J . Am.
Chem. Soc. 1989, 111, 3368-3374.
(31) Brady, K.; Wei, A.; Ringe, D.; Abeles, R. H. Structure of
Chymotrypsin-trifluoromethyl Ketone Inhibitor Complexes: Com-
parison of Slowly and Rapidly Equilibrating Inhibitors. Bio-
chemistry 1990, 29, 7600-7607.
(32) Wei, K.-T.; Ward, D. L. The Crystal and Molecular Structures
of Ammonium Fluoroacetate, C2H6FNO2, and Ammonium Dif-
luoroacetate, C2H5F2NO2. Acta Crystallogr., Sect. B 1976, 32,
2768-2773.
(33) Underwood, D. J ., Bristol-Myers Squibb Co. (formerly DuPont
Pharmaceutical Company), unpublished results.
(34) Bauer, W.; Briner, U.; Doepfner, W.; Haller, R.; Huguenin, R.;
Marbach, P.; Petcher, T.; Pless, J . SMS 201-995: A Very Potent
and Selective Octapeptide Analogue of Somatostatin with Pro-
longed Action. Life Sci. 1982, 31, 1133-1140. (b) Pohl, E.; Heine,
A.; Sheldrick, G. M.; Dauter, Z.; Wilson, K. S.; Kallen, J .; Huber,
W.; Pfa¨ffli, P. J . Structure of Octreotide, a Somatostatin Ana-
logue. Acta Crystallogr., Sect. D 1995, 51, 48-59 and references
therein. (c) Melacini, G.; Zhu, Q.; Goodman, M. Multiconforma-
tional NMR Analysis of Sandostatin (Octreotide): Equilibrium
between â-Sheet and Partially Helical Structures. Biochemistry
1997, 36, 1233-1241.
(35) Nutt, R., Merck Research Laboratories, private communication.
(36) Veber, D. F.; Holly, F. W.; Paleveda, W. J .; Nutt, R. F.;
Bergstrand, S. J .; Torchiana, M.; Glitzer, M. S.; Saperstein, R.;
Hirschmann, R. Conformationally Restricted Bicyclic Analogues
of Somatostatin. Proc. Natl. Acad. Sci. U.S.A. 1978, 75, 2636-
2640.
(5) For a review of subtype-selective ligands, see refs 9-17 in:
Rivier, J . E.; Hoeger, C.; Erchegyi, J .; Gulyas, J .; DeBoard, R.;
Craig, A. G.; Koerber, S. C.; Wenger, S.; Waser, B.; Schaer, J .-
C.; Reubi, J . C. Potent Somatostatin Undecapeptide Agonists
Selective for Somatostatin Receptor 1 (sst1). J . Med. Chem. 2001,
44, 2238-2246.
(6) Unpublished results from these laboratories.
(7) The SARs of 2 at the NK1 and SRIF receptors illustrate the role
of radial symmetry in the glucoside scaffold.8,9 Compound 2 binds
not only the SRIF receptor for which it was designed, but also
the NK1 and â2 adrenergic receptors. These activities were
discovered by serendipity, without systematic screening; fur-
thermore, a close analogue of 2 blocks the interaction of IkB with
its kinase. [The authors are indebted to Dr. Carl DeCicco,
Bristol-Myers Squibb Co. (formerly DuPont Pharmaceutical
Company) for this information.] We have attributed this pro-
miscuity to the radial symmetry of the glucose scaffold which is
exemplified by the fact that 2 binds the sst4 and the NK1
receptors via side chains in positions 1,6 and 1,2, respectively.
Cyclic hexapeptides, however, which lack such symmetry, bind
both receptors via side chains in the i+1 and i+2 positions.8,9 It
is important to appreciate that this promiscuity can be overcome
because, although 2 binds diverse receptors, excellent specificity
can be incorporated.
(8) Liu, J .; Underwood, D. J .; Cascieri, M. A.; Rohrer, S. P.; Cantin,
L.-D.; Chicchi, G.; Smith, A. B., III; Hirschmann, R. Synthesis
of a Substance P Antagonist with
a Somatostatin Scaffold:
Factors Affecting Agonism/Antagonism at GPCRs and the Role
of Pseudosymmetry. J . Med. Chem. 2000, 43, 3827-3831.
(9) McVaugh, C. T.; Han, G.; Chicchi, G. G.; Underwood, D. J .;
Prasad, V.; Liu, J .; Kurtz, M. M.; Birzin, E. T.; Cascieri, M. A.;
Rohrer, S. P.; Smith, A. B., III; Hirschmann, R. Manuscript in
preparation.
(10) Fersht, A. R. The Hydrogen Bond in Molecular Recognition.
Trends Biochem. Sci. 1987, 12, 301-304. (b) Fersht, A. R.; Shi,
J .-P.; Knill-J ones, J .; Lowe, D. M.; Wilkinson, A. J .; Blow, D.
M.; Brick, P.; Carter, P.; Waye, M. M. Y.; Winter, G. Hydrogen
Bonding and Biological Specificity Analysed by Protein Engi-
neering. Nature 1985, 314, 235-238.
(11) Hunter, C. A.; Sanders, J . K. M. The Nature of π-π Interactions.
J . Am. Chem. Soc. 1990, 112, 5525-5534.
(12) Although it has been stated that the imidazol-4- ylmethyl and
the pyridyl rings are bioisosteric,13 molecular modeling using
the MM2* force field [Barbosa, J . (of these laboratories), private
communication.] revealed poor overlap of the ring nitrogens of
the imidazole in (+)-13 with that of the pyridin-3-ylmethyl
analogue (+)-8.
(13) Robertson, D. W.; Krushinski, J . H.; Pollock, G. D.; Hayes, J . S.
Imidazole-Pyridine Bioisosterism: Comparison of the Inotropic
Activities of Pyridine and Imidazole-Substituted 6-Phenyldihy-
dropyridazinone Cardiotonics. J . Med. Chem. 1988, 31, 461-
465.
(14) Berthelot, M.; Laurence, C.; Mohamed, S.; Besseau, F. Hydrogen-
bond Basicity pKHB Scale of Six-membered Aromatic N-Het-
erocycles. J . Chem. Soc., Perkin Trans. 2 1998, 283-290. The
pKHB values are defined as the negative log of the equilibrium
constants for hydrogen bond formation of the base of the
heterocycle with 4-fluorophenol in CCl4, thus measuring H-
bonding strengths directly.
(15) Caminati, W.; Favero, L. B.; Favero, P. G.; Maris, A.; Melandri,
S. Intermolecular Hydrogen Bonding Between Water and Pyra-
zine. Angew. Chem., Int. Ed. Engl. 1998, 37, 792-795.
(16) The data suggest the possibility, but do not demonstrate, that
both of the pyrazinyl nitrogen atoms are involved in hydrogen
bonding.
(17) Bone, R.; Agard, D. A. Mutational Remodeling of Enzyme
Specificity. In Methods in Enzymology; Langone, J . J ., Ed.; Acad.
Press: New York, 1991; Chapter 28, Vol. 202, pp 643-670.
(18) Steiner, T.; Koellner, G. Hydrogen Bonds with π-Acceptors in
Proteins: Frequencies and Role in Stabilizing Local 3D Struc-
tures. J . Mol. Biol. 2001, 305, 535-557.
(19) The modest affinity enhancement is not unexpected since on
receptor binding the pyridine nitrogen’s hydrogen bond with
solvent is merely replaced by a hydrogen bond with the receptor.
(20) Dunitz, J . D.; Taylor, R. Organic Fluorine Hardly Ever Accepts
Hydrogen Bonds. Chem.-Eur. J . 1997, 3, 89-98.
(21) See also the work of: (a) Murray-Rust, P.; Stallings, W. C.;
Monti, C. T.; Preston, R. K.; Glusker, J . P. Intermolecular
Interactions of the C-F Bond: The Crystallographic Environ-
ment of Fluorinated Carboxylic Acids and Related Structures.
J . Am. Chem. Soc. 1983, 105, 3206-3214. (b) Shimoni, L.;
Glusker, J . P. The Geometry of Intermolecular Interactions in
(37) The relationship between the C4 substituent of the sugar and
Phe11 is further complicated by the herringbone interactions
between the side chains of Phe6 and Phe11 of SRIF.