C O M M U N I C A T I O N S
the titanium-oxo dimer [(Nacnac)Ti(µ2-O)(µ2-OTf)]2 (4)14 in quan-
titative yield (Scheme 2).8 Bridged titanium-oxo complex 4 and
the corresponding olefin were isolated in 90% and 91% yield,
respectively.6 The reactivity observed between 3 and benzophenone
follows well-established “Wittig-type” reagents studied in organic
synthesis.15
Acknowledgment. This work is dedicated to the memory of
Professor Richard Koerner. For financial support of this work, we
thank Indiana University-Bloomington, the Camille and Henry
Dreyfus Foundation, and the Ford Foundation. D.J.M. would like
to thank Mr. X. Hu, Dr. R. Isaacson, and Professors K. Meyer, K.
G. Caulton, J. M. Zaleski, and C. C. Cummins for insightful
discussions.
Scheme 2. Reactivity of Titanium Alkylidene 3
Supporting Information Available: Experimental preparation and
crystallographic data for compounds 1-6 (PDF). This material is
References
(1) (a) Schrock, R. R. Acc. Chem. Res. 1979, 12, 98. (b) Schrock, R. R. Acc.
Chem. Res. 1990, 23, 158. (c) Schrock, R. R. Chem. ReV. 2002, 102,
145. (d) Schrock, R. R. In Reactions of Coordinated Ligands; Braterman,
P. R., Ed.; Plenum: New York, 1989. (e) Feldman, J.; Schrock, R. R.
Prog. Inorg. Chem. 1991, 39, 1.
(2) (a) Rouhi, A. M. Chem. Eng. News 2002, 80, 29. (b) Fu¨rstner, A. AdV.
Synth. Catal. 2002, 344, 567. (c) Schrock, R. R. AdV. Synth. Catal. 2002,
344, 571.
(3) Beckhaus, R. Angew. Chem., Int. Ed. Engl. 1997, 36, 686.
(4) Baumann, R.; Stumpf, R.; Davis, W. M.; Liang, L.-C.; Schrock, R. R. J.
Am. Chem. Soc. 1999, 121, 7823.
(5) (a) Fryzuk, M. D.; Mao, S. S. H.; Zaworotko, M. J.; MacGillivray, L. R.
J. Am. Chem. Soc. 1993, 115, 5336. (b) Fryzuk, M. D.; Duval, P. B.;
Mao, S. S. H.; Zaworotko, M. J.; MacGillivray, L. R. J. Am. Chem. Soc.
1993, 115, 2478. (c) Fryzuk, M. D.; Duval, P. B.; Patrick, B. O.; Rettig,
S. J. Organometallics 2001, 20, 1608.
(6) (a) van Doorn, J. A.; van der Haijden, H. Organometallics 1995, 14, 1278.
(b) Kahlert S.; Gorls, H.; Scholz, J. Angew. Chem., Int. Ed. 1998, 37,
1857. (c) van Doorn, J. A.; van der Haijden, H.; Orpen, A. G.
Organometallics 1994, 13, 4271. (d) Sinnema, P.-J.; van der Veen, L.;
Spek, A. L.; Veldman, N.; Teuben, J. H. Organometallics 1997, 16, 4245.
(7) Budzelaar, P. H. M.; von Oort, A. B.; Orpen, A. G. Eur. J. Inorg. Chem.
1998, 1485.
(8) See the Supporting Information for complete experimental, spectral, and
crystallographic details.
(9) Schrock, R. R.; Fellmann, J. D. J. Am. Chem. Soc. 1978, 100, 3359.
(10) For an example describing R-hydrogen abstraction stemming from a five-
coordinate complex, see: Schrock, R. R.; Murdzek, J. S.; Bazan, G. C.;
Robbins, J.; DiMare, M.; O’Regan, M. J. Am. Chem. Soc. 1990, 112,
3875.
(11) Summers, M. F.; Marzilli, L. G.; Bax, A. J. J. Am. Chem. Soc. 1986,
108, 4285.
(12) A search of the Cambridge Crystallographic Database for titanium-
alkylidene bond lengths indicated values to be g1.884(4) Å.
(13) The formation of the alkene was confirmed by spectroscopic comparison
with 1H NMR shifts reported in the literature. Adam, W.; Baeza, J.; Liu,
J.-C. J. Am. Chem. Soc. 1972, 94, 2000.
(14) The molecular structure of 4 showed an edged-sharing bioctahedra
geometry composed of two bridging oxo and triflate ligands. See the
Supporting Information, ref 8.
(15) For some illustrative “Wittig-type” titanium-based reactions, see: (a)
Crabtree, R. H. The Organometallic Chemistry of the Transition Metals;
Wiley: New York, 2001. (b) Schrock, R. R. J. Am. Chem. Soc. 1976, 98,
5399. (c) Tebbe, F. N.; Parshall, G. W.; Parshall, G. W.; Reddy, G. S. J.
Am. Chem. Soc. 1978, 100, 3611. (d) Kauffmann, T.; Ennen, B.; Sander,
J.; Wieschollek, R. Angew. Chem., Int. Ed. Engl. 1983, 22, 244. (e) Grubbs,
R. H.; Cannizzo, L. F. J. Org. Chem. 1985, 50, 2316. (f) Wilcox, C. S.;
Long, G. W.; Suh, H. Tetrahedron Lett. 1984, 25, 395. (g) Petasis, N. A.;
Bzowej, E. I. J. Am. Chem. Soc. 1990, 112, 6392.
(16) (a) Wigley, D. E. Prog. Inorg. Chem. 1994, 42, 239. (b) Cummins, C.
C.; Schaller, C. P.; Van Duyne, G. D.; Wolczanski, P. T.; Chan, A. W.
E.; Hoffmann, R. J. Am. Chem. Soc. 1991, 113, 2985.
(17) One-electron oxidation followed by hydrogen atom abstraction to generate
a putative tungsten-alkylidene has been reported. Jernakoff, P.; Cooper,
N. J. Organometallics 1986, 5, 747.
Although stable as a solid, complex 3 decomposes gradually in
solution (room temperature, >2 days) to a new product as evidenced
by 1H and 13C NMR spectroscopy. In fact, heating toluene or
benzene solutions of 3 to 60 °C for 2 h affords the titanium imido-
triflato complex supported by the chelating amido-diene ligand (η2-
HtBuCdC(Me)CHC(Me)N[Ar])TidNAr(µ2-OTf) (5) (65% isolated
yield, Scheme 2).8 Complex 5 is likely formed by a Wittig-type
reaction between the titanium neopentylidene and the imine-aryl
functionality of the Nacnac ligand. The molecular structure of 5 is
shown in Figure 1 and displays one of the diastereomers,8 and the
1H NMR spectrum of 5 also indicates one diastereomer being
present in solution at 25 °C. The chelate ligand in 5 exhibits a
resonance indicative of an amido-diene because addition of a Lewis
base such as Et2O affords crystals in 80% yield of the adduct (η1-
HtBuCdC(Me)CHC(Me)N[Ar])TidNAr(OTf)(Et2O) (6), in which
the olefinic pendant arm of the amide-diene ligand has been
displaced by the Lewis base (Scheme 2). Mild heating of 6 under
reduced pressure (50 °C, 2 h) regenerates 5 (Scheme 2). The
molecular structure of the etherate adduct 68 reveals a rare example
of a four-coordinate titanium imido.16
In summary, we have shown that one-electron oxidation of a
Ti(III) bis-neopentyl complex supported by a Nacnac ligand affords
a terminal, and four-coordinate, titanium neopentylidene and
titanium imido. In contrast to thermolytic reactions, an oxidatively
induced R-abstraction procedure17 can create a low-coordinate
titanium alkylidene complex containing a labile group (e.g., triflate).
We are currently exploring the mechanism behind the carbene-
imine Wittig reaction to make 5, as well as the chemical reactivity
of 3 with olefins.
JA034786N
9
J. AM. CHEM. SOC. VOL. 125, NO. 20, 2003 6053