Page 7 of 8
Analytical Chemistry
(3) Zhao, W.ꢀW.; Xu, J.ꢀJ.; Chen, H.ꢀY. Photoelectrochemical DNA
trochemical Enzymatic Bioanalysis. Anal. Chem. 2018, 90, 1492ꢀ
Biosensors. Chem. Rev. 2014, 114, 7421ꢀ7441.
1497.
1
2
3
4
5
6
7
8
(4) Zhao, W.ꢀW.; Xu, J.ꢀJ.; Chen, H.ꢀY. Photoelectrochemical Bioaꢀ
nalysis: the State of the Art. Chem. Soc. Rev. 2015, 44, 729ꢀ741.
(21) Li, R.; Zhang, Y.; Tu, W.; Dai, Z. Photoelectrochemical Bioaꢀ
nalysis Platform for Cells Monitoring Based on Dual Signal Amplifiꢀ
cation Using in Situ Generation of Electron Acceptor Coupled with
Heterojunction. ACS Appl. Mat. Interfaces 2017, 9, 22289ꢀ22297.
(5) Haddour, N.; Chauvin, J.; Gondran, C.; Cosnier, S. Photoelectroꢀ
chemical Immunosensor for LabelꢀFree Detection and Quantification
of Antiꢀcholera Toxin Antibody. J. Am. Chem. Soc. 2006, 128, 9693ꢀ
9698.
(22) Zhang, N.; Ruan, Y.ꢀF.; Ma, Z.ꢀY.; Zhao, W.ꢀW.; Xu, J.ꢀJ.; Chen,
H.ꢀY. Simultaneous Photoelectrochemical and Visualized Immunoasꢀ
say of βꢀhuman Chorionic Gonadotrophin. Biosens. Bioelectron. 2016,
85, 294ꢀ299.
(6) Zhao, W.ꢀW.; Xu, J.ꢀJ.; Chen, H.ꢀY. Photoelectrochemical Apꢀ
tasensing. TrAC, Trends Anal. Chem. 2016, 82, 307ꢀ315.
(23) Ma, Z.ꢀY.; Xu, F.; Qin, Y.; Zhao, W.ꢀW.; Xu, J.ꢀJ.; Chen, H.ꢀY.
Invoking Direct Exciton–Plasmon Interactions by Catalytic Ag Depoꢀ
sition on Au Nanoparticles: Photoelectrochemical Bioanalysis with
High Efficiency. Anal. Chem. 2016, 88, 4183ꢀ4187.
9
(7) Tang, J.; Zhang, Y.; Kong, B.; Wang, Y.; Da, P.; Li, J.; Elzatahry,
A. A.; Zhao, D.; Gong, X.; Zheng, G. SolarꢀDriven Photoelectroꢀ
chemical Probing of Nanodot/Nanowire/Cell Interface. Nano Lett.
2014, 14, 2702ꢀ2708.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(24) Lan, F.; Sun, G.; Liang, L.; Ge, S.; Yan, M.; Yu, J. Microfluidic
PaperꢀBased Analytical Device for Photoelectrochemical Immunoasꢀ
say with Multiplex Signal Amplification Using Multibranched Hyꢀ
bridization Chain Reaction and PdAu Enzyme Mimetics. Biosens.
Bioelectron. 2016, 79, 416ꢀ422.
(8) Hao, N.; Zhang, Y.; Zhong, H.; Zhou, Z.; Hua, R.; Qian, J.; Liu,
Q.; Li, H.; Wang, K. Design of a Dual Channel SelfꢀReference Photoꢀ
electrochemical Biosensor. Anal. Chem. 2017, 89, 10133ꢀ10136.
(9) Mei, L.ꢀP.; Liu, F.; Pan, J.ꢀB.; Zhao, W.ꢀW.; Xu, J.ꢀJ.; Chen, H.ꢀY.
EnediolꢀLigandsꢀEncapsulated Liposomes Enables Sensitive Immuꢀ
noassay: A ProofꢀofꢀConcept for General LiposomesꢀBased Photoeꢀ
lectrochemical Bioanalysis. Anal. Chem. 2017, 89, 6300ꢀ6304.
(25) Pang, X.; Bian, H.; Su, M.; Ren, Y.; Qi, J.; Ma, H.; Wu, D.; Hu,
L.; Du, B.; Wei, Q. Photoelectrochemical Cytosensing of RAW264.7
Macrophage Cells Based on a TiO2 Nanoneedls@MoO3 Array. Anal.
Chem. 2017, 89, 7950ꢀ7957.
(10) Guo, L.; Li, Z.; Marcus, K.; Navarro, S.; Liang, K.; Zhou, L.;
Mani, P.; Florczyk, S.; Coffey, K.; Orlovskaya, N.; Sohn, Y.; Yang, Y.
Periodically Patterned AuꢀTiO2 Heterostructures for Photoelectroꢀ
chemical Sensor. ACS Sens. 2017, 2, 621ꢀ625.
(26) Zhao, W.ꢀW.; Zhang, L.; Xu, J.ꢀJ.; Chen, H.ꢀY. Cell Surface
Carbohydrates Evaluation via a Photoelectrochemical Approach.
Chem. Commun. 2012, 48, 9456ꢀ9458.
(11) Zhao, W.ꢀW.; Yu, X.ꢀD.; Xu, J.ꢀJ.; Chen, H.ꢀY. Recent Advancꢀ
es in the Use of Quantum Dots for Photoelectrochemical Bioanalysis.
Nanoscale 2016, 8, 17407ꢀ17414.
(27) Kang, Z.; Yan, X.; Wang, Y.; Zhao, Y.; Bai, Z.; Liu, Y.; Zhao,
K.; Cao, S.; Zhang, Y. SelfꢀPowered Photoelectrochemical Biosensꢀ
ing Platform based on Au NPs@ZnO Nanorods Array. Nano Re-
search 2016, 9, 344ꢀ352.
(12) Yan, K.; Liu, Y.; Yang, Y.; Zhang, J. A Cathodic “Signalꢀoff”
Photoelectrochemical Aptasensor for Ultrasensitive and Selective
Detection of Oxytetracycline. Anal. Chem. 2015, 87, 12215ꢀ12220.
(28) Li, R.; Liu, Y.; Yan, T.; Li, Y.; Cao, W.; Wei, Q.; Du, B. A
Competitive Photoelectrochemical Assay for Estradiol based on in
situ Generated CdSꢀenhanced TiO2. Biosens. Bioelectron. 2015, 66,
596ꢀ602.
(13) Zhu, Y.ꢀC.; Zhang, N.; Ruan, Y.ꢀF.; Zhao, W.ꢀW.; Xu, J.ꢀJ.;
Chen, H.ꢀY. Alkaline Phosphatase Tagged Antibodies on Gold Nanoꢀ
particles/TiO2 Nanotubes Electrode: A Plasmonic Strategy for Labelꢀ
Free and Amplified Photoelectrochemical Immunoassay. Anal. Chem.
2016, 88, 5626ꢀ5630.
(29) Zhao, W.ꢀW.; Xu, J.ꢀJ.; Chen, H.ꢀY. Photoelectrochemical Enꢀ
zymatic Biosensors. Biosens. Bioelectron. 2017, 92, 294ꢀ304.
(30) Zhao, W.ꢀW.; Xu, J.ꢀJ.; Chen, H.ꢀY. Photoelectrochemical Imꢀ
munoassays. Anal. Chem. 2018, 90, 615ꢀ627.
(14) Zhao, W.ꢀW.; Ma, Z.ꢀY.; Yu, P.ꢀP.; Dong, X.ꢀY.; Xu, J.ꢀJ.; Chen,
H.ꢀY. Highly Sensitive Photoelectrochemical Immunoassay with
Enhanced Amplification Using Horseradish Peroxidase Induced Bioꢀ
catalytic Precipitation on a CdS Quantum Dots Multilayer Electrode.
Anal. Chem. 2012, 84, 917ꢀ923.
(31) Liu, Y.; Yan, K.; Zhang, J. Graphitic Carbon Nitride Sensitized
with CdS Quantum Dots for VisibleꢀLightꢀDriven Photoelectrochemꢀ
ical Aptasensing of Tetracycline. ACS Appl. Mat. Interfaces 2016, 8,
28255ꢀ28264.
(15) Long, Y. T.; Kong, C.; Li, D. W.; Li, Y.; Chowdhury, S.; Tian, H.
Ultrasensitive Determination of Cysteine Based on the Photocurrent
of NafionꢀFunctionalized CdSꢀMV Quantum Dots on an ITO Elecꢀ
trode. Small 2011, 7, 1624ꢀ1628.
(32) Qiu, Z.; Shu, J.; Tang, D. NearꢀInfraredꢀtoꢀUltraviolet Lightꢀ
Mediated Photoelectrochemical Aptasensing Platform for Cancer
Biomarker Based on Core–Shell NaYF4:Yb,Tm@TiO2 Upconversion
Microrods. Anal. Chem. 2018, 90, 1021ꢀ1028.
(16) Li, H.; Mu, Y.; Yan, J.; Cui, D.; Ou, W.; Wan, Y.; Liu, S. Labelꢀ
Free Photoelectrochemical Immunosensor for Neutrophil Gelatinaseꢀ
Associated Lipocalin Based on the Use of Nanobodies. Anal. Chem.
2015, 87, 2007ꢀ2015.
(33) Ruan, Y.ꢀF.; Zhang, N.; Zhu, Y.ꢀC.; Zhao, W.ꢀW.; Xu, J.ꢀJ.;
Chen, H.ꢀY. Photoelectrochemical Bioanalysis Platform of Gold Naꢀ
noparticles Equipped Perovskite Bi4NbO8Cl. Anal. Chem. 2017, 89,
7869ꢀ7875.
(17) Li, X.; Zhu, L.; Zhou, Y.; Yin, H.; Ai, S. Enhanced Photoelectroꢀ
chemical Method for Sensitive Detection of Protein Kinase A Activity
Using TiO2/gꢀC3N4, PAMAM Dendrimer, and Alkaline Phosphatase.
Anal. Chem. 2017, 89, 2369ꢀ2376.
(34) Nechache, R.; Harnagea, C.; Li, S.; Cardenas, L.; Huang, W.;
Chakrabartty, J.; Rosei, F. Bandgap Tuning of Multiferroic Oxide
Solar Cells. Nat. Photonics 2014, 9, 61ꢀ67.
(18) Li, C.; Lu, W.; Zhu, M.; Tang, B. Development of VisibleꢀLight
Induced Photoelectrochemical Platform Based on Cyclometalated
Iridium(III) Complex for Bioanalysis. Anal. Chem. 2017, 89, 11098ꢀ
11106.
(35) Morris, M. R.; Pendlebury, S. R.; Hong, J.; Dunn, S.; Durrant, J.
R. Effect of Internal Electric Fields on Charge Carrier Dynamics in a
Ferroelectric Material for Solar Energy Conversion. Adv. Mater. 2016,
28, 7123ꢀ7128.
(19) Shu, J.; Qiu, Z.; Lin, Z.; Cai, G.; Yang, H.; Tang, D. Semiautoꢀ
mated Support Photoelectrochemical Immunosensing Platform for
Portable and HighꢀThroughput Immunoassay Based on Au Nanocrysꢀ
tal Decorated Specific Crystal Facets BiVO4 Photoanode. Anal. Chem.
2016, 88, 12539ꢀ12546.
(36) Yang, S. Y.; Martin, L. W.; Byrnes, S. J.; Conry, T. E.; Basu, S.
R.; Paran, D.; Reichertz, L.; Ihlefeld, J.; Adamo, C.; Melville, A.
Photovoltaic Effects in BiFeO3. Appl. Phys. Lett. 2009, 95, 062909.
(37) Grinberg, I.; West, D. V.; Torres, M.; Gou, G.; Stein, D. M.; Wu,
L.; Chen, G.; Gallo, E. M.; Akbashev, A. R.; Davies, P. K.; Spanier, J.
E.; Rappe, A. M. Perovskite Oxides for Visibleꢀlightꢀabsorbing Ferꢀ
roelectric and Photovoltaic Materials. Nature 2013, 503, 509ꢀ512.
(20) Wang, G.ꢀL.; Yuan, F.; Gu, T.; Dong, Y.; Wang, Q.; Zhao, W.ꢀ
W. EnzymeꢀInitiated QuinoneꢀChitosan Conjugation Chemistry:
Toward A General in Situ Strategy for HighꢀThroughput Photoelecꢀ
7
ACS Paragon Plus Environment