Angewandte
Chemie
16.9 kcalmolꢀ1.[4] For the dianion of B4Me4 the distorted
[10]
Cambridge CB21EZ, UK; Fax: (+ 44)1223-336033; or deposit
@ccdc.cam.ac.uk).
tetrahedral form according to our computations lies only
4.9 kcalmolꢀ1 above the folded two-electron aromtic com-
pound; its planarization requires 7.3 kcalmolꢀ1. Thus, an
increasing number of boron atoms in four-membered two-
electron aromatic compounds facilitates the planarization as
well as the fluctuation of the skeletal bonds.
[8] The line shape analysis was carried out with WIN-DYNA 32,
Bruker Analytik GmbH, Version 1.01; the changes in the
chemical shifts in the investigated temperature interval were
considered to be linear and the line widths of the trimethylsilyl
groups were used as the reference line widths. The rate constants
of the ring inversion kRInv were computed from the difference in
rate constants of the enantiomerization without ring inversion
ktet (coalescence of the methyl groups and protons at the
aromatic group) and the enantiomerization with ring inversion
Received: August 6, 2002 [Z19899]
ktotal (coalescence of the methylene protons) according to kRInv
=
ktotalꢀktet
.
[1] M. Bremer, P. von R. Schleyer, U. Fleischer, J. Am. Chem. Soc.
1989, 111, 1147, and references therein.
[2] M. Hildenbrand, H. Pritzkow, W. Siebert, Angew. Chem. 1985,
97, 769; Angew. Chem. Int. Ed. Engl. 1985, 24, 759, and
references therein.
[9] Tetrahedra of CB3 anions are, like those of the isoelectronic B4
dianions, distorted.[10] There are three forms for distorted
tetrahedra of the type 6a: two enantiomers with short C BDur
edges (the transition state between 3b and 3a), and one with a
ꢀ
ꢀ
short C BCH2R edge (the transition state of the degenerate
[3] P. H. M. Budzelaar, K. Krogh-Jespersen, T. Clark, P. von R.
Schleyer, J. Am. Chem. Soc. 1985, 107, 2723.
rearrangement of 3a).
[10] A. Neu, T. Mennekes, U. Englert, P. Paetzold, M. Hofmann, P.
von R. Schleyer, Angew. Chem. 1997, 109, 2211; Angew. Chem.
Int. Ed. Engl. 1997, 36, 2117.
[4] M. McKee, Inorg. Chem. 2000, 39, 4206, and references therein.
[5] All geometries were optimized by employing the B3LYP hybrid
functional together with the 6-31G(d) basis set, and the nature of
the stationary points was characterized by analytical frequency
calculations. Relative energies are based on energy calculations
with 6-311 + G(d,p) and are corrected for zero-point energies.
a) Gaussian 98, Revision A.7, M. J. Frisch, G. W. Trucks, H. B.
Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G.
Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Bur-
ant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C.
Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B.
Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A.
Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick,
A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski,
J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P.
Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T.
Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C.
Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen,
M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S.
Replogle, und J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1998;
b) A. D. Becke, J. Chem. Phys. 1993, 98, 1372; A. D. Becke, J.
Chem. Phys. 1993, 98, 5648; c) C. Lee, W. Yang, R. G. Parr, Phys.
Rev. B 1988, 37, 785.
Boron-Containing Rings
A Diboracyclopropane with a Planar-
Tetracoordinate Carbon Atom and a
Triborabicyclobutane**
Y¸ksel Sahin, Carsten Pr‰sang, Matthias Hofmann,
Govindan Subramanian, Gertraud Geiseler,
Werner Massa, and Armin Berndt*
[6] The synthesis of 5 will be described elsewhere.
[7] Crystal structure analyses: 3a¥Li(Et2O)3: A colorless crystal
(0.45 î 0.35 î 0.25 mm3) was measured at 193 K on an IPDS area
detector system (Stoe) with MoKa radiation. C40H76B3LiO3Si2,
monoclinic, space group P21/c, Z = 4, a = 1183.4(1), b =
2277.6(2), c = 1756.7(1) pm, b = 98.32(1)8, V= 4685.0(6)
Dedicated to Professor Paul von Raguÿ Schleyer
Known molecules with a planar-tetracoordinate carbon
atom[1] contain metal centers.[2] According to computations[3]
the prototype of such molecules without metal centers is the
diboracyclopropane 1u (Scheme 1). Derivatives of the lower
energy isomer 2u with planar-tetracoordinate boron atoms[4]
î10ꢀ30 m3, 1calcd = 0.993 Mgmꢀ3 50384 reflections up to q =
,
25.848, 8557 independent (Rint = 0.1160), 3910 with I > 2s(I).
The structure was solved with direct methods and refined against
F2 with full matrix. Hydrogen atoms were considered as riding at
calculated positions, wR2 = 0.1527 for all reflections, R = 0.0691
for observed reflections. Limited accuracy due to the disorder of
the diethyl ether in the Li(Et2O)3 cation. 4: Pale yellow crystal
(0.30 î 0.15 î 0.05 mm3) C28H46B3ClSi2, monoclinic, space group
C2/c, Z = 8, a = 3031.1(2), b = 988.1(1), c = 2217.6(1) pm, b =
[*] Prof. Dr. A. Berndt, Dr. Y. Sahin, Dr. C. Pr‰sang, Dr. G. Subramanian,
G. Geiseler, Prof. Dr. W. Massa
Fachbereich Chemie
Universit‰t Marburg
35032 Marburg (Germany)
Fax: (+49)6421-282-8917
E-mail: berndt@chemie.uni-marburg.de
111.06(1)8, V= 6198.1(8)î10ꢀ30 m3, 1ber = 1.086 Mgmꢀ3 meas-
,
urement as for 3a¥Li(Et2O)3, 12475 reflections up to q = 24.08,
4627 independent (Rint = 0.1414), 1857 with I > 2s(I) (only very
thin platelets available). The structure was solved analogously to
that of 3a, resulting in wR2 = 0.1144 for all reflections, and R =
0.0539 for the observed reflections. CCDC-187178 (3a¥Li-
(Et2O)3) and CCDC-187179 (4) contain the supplementary
crystallographic data for this paper. These data can be obtained
from the Cambridge Crystallographic Centre, 12Union Road,
Dr. M. Hofmann
Anorganisch-Chemisches Institut
Universit‰t Heidelberg
Im Neuenheimer Feld 270, 69120 Heidelberg (Germany)
[**] This work was supported by the Deutsche Forschungsgemeinschaft
and the Fonds der Chemischen Industrie.
Angew. Chem. Int. Ed. 2003, 42, No. 6
¹ 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
1433-7851/03/4206-0671 $ 20.00+.50/0
671