Communication
ChemComm
21572055, 21738002, W. W.) and the Chinese Fundamental
Research Funds for the Central Universities (ECUST: WY1714033) is
gratefully acknowledged.
Conflicts of interest
There are no conflicts to declare.
Scheme 5 Photoredox/Ni dual-catalyzed decarboxylative cross-coupling
of anomeric ribosyl acid with vinyl bromides. For the experimental details,
see general procedure in ESI† unless otherwise noted, isolated yields were Notes and references
reported. aStereomeric ratio was determined using H NMR spectroscopy.
1
1 (a) E. De Clercq, J. Med. Chem., 2016, 59, 2301–2311; (b) A. G. Draffan,
B. Frey, B. Pool, C. Gannon, E. M. Tyndall, M. Lilly, P. Francom,
R. Hufton, R. Halim, S. Jahangiri, S. Bond, V. T. T. Nguyen,
T. P. Jeynes, V. Wirth, A. Luttick, D. Tilmanis, J. D. Thomas, M. Pryor,
K. Porter, C. J. Morton, B. Lin, J. Duan, G. Kukolj, B. Simoneau,
cycle, we assumed that the active Ni(0) species (Ni0Ln) in situ
generated via two SET reductions of (bpy)Ni(II)Br2 by the photo-
catalyst PS- would undergo oxidative addition into the aryl
bromides 2a, forming the electrophilic Ni(II)-aryl intermediate
II. This Ni(II) species would rapidly intercept anomeric ribosyl
radical I to generate a Ni(III)-aryl-ribosyl complex III, which should
undergo reductive elimination to produce the desired product 3a
accompanied with the formation of Ni(I) complex (bpy)Ni(I)Br.
Reduction of (bpy)Ni(I)Br by PS-, would then reconstitute both
Ni(0) species (Ni0Ln) and ground state of 4CzIPN (PS).
Finally, the protocol was employed to transform vinyl bro-
mides into vinyl-C-nucleosides (Scheme 5). As expected, various
vinyl bromides were also proved effective reactants (7a–7c,
72–73%, b : a 4 99 : 1). Interestingly, only trans-7a was formed,
even when a mixture of trans and cis styryl bromides (trans : cis =
1 : 1) was used as the substrate.
In conclusion, we have established a robust radial cross-
coupling strategy for the highly stereoselective synthesis of
biologically important aryl/heteroaryl-C-nucleosides from readily
accessible anomeric ribosyl/deoxyribosyl acids and a variety of
aryl/heteroaryl bromides. This new approach is enabled by the
catalytic activation of both coupling partners through the syner-
gistic merger of photoredox and nickel catalysis in the presence
of visible light. The benign nature of the reaction conditions has
been exemplified by the breadth of functional groups tolerated in
this transformation. Furthermore, the reactions display broad
substrate scope and feature the using of cost-effective and easily
handled starting materials and catalysts. We believe that these
advantages will enable the rapid access to diverse aryl/hetero-
aryl-C-nucleoside collections for drug discovery and chemical
biology study.
´
G. McKercher, L. Lagace, M. a. Amad, R. C. Bethell and S. P. Tucker,
ACS Med. Chem. Lett., 2014, 5, 679–684; (c) G. Wang, J. Wan, Y. Hu, X. Wu,
M. Prhavc, N. Dyatkina, V. K. Rajwanshi, D. B. Smith, A. Jekle, A. Kinkade,
J. A. Symons, Z. Jin, J. Deval, Q. Zhang, Y. Tam, S. Chanda, L. Blatt and
L. Beigelman, J. Med. Chem., 2016, 59, 4611–4624; (d) P. Franchetti,
L. Cappellacci, M. Grifantini, A. Barzi, G. Nocentini, H. Yang,
A. O’Connor, H. N. Jayaram, C. Carrell and B. M. Goldstein, J. Med.
Chem., 1995, 38, 3829–3837; (e) K. Krohn, H. Heins and K. Wielckens,
J. Med. Chem., 1992, 35, 511–517.
2 (a) K. Dhami, D. A. Malyshev, P. Ordoukhanian, T. Kubelka, M. Hocek
and F. E. Romesberg, Nucleic Acids Res., 2014, 42, 10235–10244;
(b) A. W. Feldman, V. T. Dien, R. J. Karadeema, E. C. Fischer, Y. You,
B. A. Anderson, R. Krishnamurthy, J.-S. Chen, L. Li and F. E. Romesberg,
J. Am. Chem. Soc., 2019, 141, 10644; (c) A. W. Feldman and F. E.
Romesberg, Acc. Chem. Res., 2018, 51, 394–403.
ˇ
ˇ
3 (a) J. Stambask´y, M. Hocek and P. Kocovsk´y, Chem. Rev., 2009, 109,
6729–6764; (b) K. Temburnikar and K. L. Seley-Radtke, Beilstein
J. Org. Chem., 2018, 14, 772–785; (c) J.-D. Liu and H.-H. Gong, Org.
Lett., 2018, 20, 7991–7995; (d) J.-D. Liu, C.-H. Lei and H.-H. Gong,
Sci. China Chem., 2019, 62, 1–5.
´
4 H.-G. Gong and M. R. Gagne, J. Am. Chem. Soc., 2008, 130,
12177–12183.
5 L. Nicolas, E. Izquierdo, P. Angibaud, I. Stansfield, L. Meerpoel,
S. Reymond and J. Cossy, J. Org. Chem., 2013, 78, 11807–11814.
6 L. Adak, S. Kawamura, G. Toma, T. Takenaka, K. Isozaki, H. Takaya,
A. Orita, H.-C. Li, T. K. M. Shing and M. Nakamura, J. Am. Chem. Soc.,
2017, 139, 10693–10701.
7 (a) Z.-W. Zuo, H. Cong, W. Li, J. Choi, G.-C. Fu and D. W. C.
MacMillan, J. Am. Chem. Soc., 2016, 138, 1832–1835; (b) Z.-W. Zuo,
D. T. Ahneman, L.-L. Chu, J. A. Terrett, A. G. Doyle and D. W. C.
MacMillan, Science, 2014, 345, 437–440.
8 (a) J. Twilton, C. Le, P. Zhang, M. H. Shaw, R. W. Evans and
D. W. C. MacMillan, Nat. Rev. Chem., 2017, 1, 0052; (b) Y.-Y. Gui,
L. Sun, Z.-P. Lu and D.-G. Yu, Org. Chem. Front., 2016, 3, 522–526;
(c) M. N. Hopkinson, B. Sahoo, J.-L. Li and F. Glorius, Chem. – Eur. J.,
2014, 20, 3874–3886.
9 H. Huang, X. Li, C. Yu, Y.-T. Zhang, P. S. Mariano and W. Wang,
Angew. Chem., Int. Ed., 2017, 56, 1500–1505.
´
10 A. Dumoulin, J. K. Matsui, L. Gutierrez-Bonet and G. A. Molander,
Financial support from the program of the National Natural
Angew. Chem., Int. Ed., 2018, 57, 6614–6618.
Science Foundation of China (21602060, 21871086, Y.-Q. Z.; 11 J. Luo and J. Zhang, ACS Catal., 2016, 6, 873–877.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2019