C O M M U N I C A T I O N S
Scheme 2 a
macrocyclic triene core, and stereoselective copper-mediated ami-
dation of a (Z)-vinyl iodide to construct the enamide side chain.
Further synthetic studies on the oximidines and their biological
evaluation will be reported in due course.
Acknowledgment. We thank Mr. Ruichao Shen for helpful
discussions, Ms. Li-Ting Huang for experimental assistance, Dr.
Aaron Beeler for HPLC-MS, and Prof. Y. Hayakawa (University
of Tokyo) for providing an authentic sample of oximidine II. This
research was supported by the NIH (GM-62842).
Supporting Information Available: Experimental procedures,
theoretical calculation results, and characterization data for all new
compounds (PDF). This material is available free of charge via the
a Conditions: (a) CrCl2, DMF, Bu3SnCHBr2, THF; (b) 11, Pd2dba3, P(2-
furyl)3, LiCl, DMF, 80 °C, 61% (two steps); (c) 6, NaHMDS, THF, 0-25
°C; then TBSCl, imidazole, 100%; (d) 18 (5 mol %), CH2Cl2, reflux, 48%
(one recycle); (e) DDQ, CH2Cl2/H2O (10/1), 0-25 °C, 93%; (f) PDC, 4 Å
mol. sieves, CH2Cl2; (g) (Ph3P+CH2I)I-, NaHMDS, THF, -78 to 25 °C,
References
i
60% (two steps); (h) CBr4, PrOH, 75 °C, 83%; (i) TBSOTf, 2,6-lutidine,
(1) Presented in part at the 224th American Chemical Society National
Meeting, Boston, MA, August 18-22, 2002; ORGN abstract 900.
(2) Kim, J. W.; Shin-ya, K.; Furihata, K.; Hayakawa, Y.; Seto, H. J. Org.
Chem. 1999, 64, 153.
CH2Cl2, -78 to 0 °C, 93%; (j) 4, CuTC, 25, K2CO3, 50 °C; (k)
HF-pyridine/pyridine, THF, 44% (two steps).
(3) McKee, T. C.; Galinis, D. L.; Pannell, L. K.; Cardellina, J. H., II; Laasko,
J.; Ireland, C. M.; Murray, L.; Capon, R. J.; Boyd, M. R. J. Org. Chem.
1998, 63, 7805.
(4) Erickson, K. L.; Beutler, J.; Cardellina, J. H., II; Boyd, M. R. J. Org.
Chem. 1997, 62, 8188.
(5) Boyd, M. R.; Farina, C.; Belfiore, P.; Gagliardi, S.; Kim, J. W.; Hayakawa,
Y.; Beutler, J. A.; McKee, T. C.; Bowman, B. J.; Bowman, E. J. J.
Pharmacol. Exp. Ther. 2001, 297, 114.
(6) For natural products with conjugated, macrocyclic (E,Z,Z)-trienes, see
(disorazoles): Jansen, R.; Irschik, H.; Reichenbach, H.; Wray, V.; Hoefle,
G. Liebigs Ann. Chem. 1994, 8, 759.
(7) (a) Kuramochi, K.; Watanabe, H.; Kitahara, T. Synlett 2000, 3, 397. (b)
Raw, S. A.; Taylor, R. J. K. Tetrahedron Lett. 2000, 41, 10357.
(8) (a) Coleman, R. S.; Garg, R. Org. Lett. 2001, 3, 3487. (b) Scheufler, F.;
Maier, M. E. Synlett 2001, 8, 1221.
(9) For an attempt to construct a conjugated, macrocyclic triene using RCM,
see: Wagner, J.; Cabrejas, L. M. M.; Grossmith, C. E.; Papageorgiou,
C.; Senia, F.; Wagner, D.; France, J.; Nolan, S. P. J. Org. Chem. 2000,
65, 9255.
(10) (a) Shen, R.; Porco, J. A., Jr. Org. Lett. 2000, 2, 1333. For applications
of this method, see: (b) Fu¨rstner, A.; Dierkes, T.; Thiel, O. R.; Blanda,
G. Chem.-Eur. J. 2001, 7, 5286. (c) Shen, R.; Lin, C. T.; Porco, J. A., Jr.
J. Am. Chem. Soc. 2002, 124, 5650. (d) Nicolaou, K. C.; Kim, D. W.;
Baati, R. Angew. Chem., Int. Ed. 2002, 41, 3701.
(11) Recent reviews: (a) Fu¨rstner, A. Angew. Chem., Int. Ed. 2000, 39, 3012.
(b) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18.
(12) For a recent example of kinetic control in RCM, see: Fu¨rstner, A.;
Radkowski, K.; Wirtz, C.; Goddard, R.; Lehmann, C. W.; Wynott, R. J.
Am. Chem. Soc. 2002, 124, 3245.
Figure 3. Representative reactive conformers of ring-closing metathesis
substrates A and B (dashed lines indicate newly formed C10-C11 bonds).
For phenol substrate (A), the salicylate carbonyl maintains near
planarity with the aromatic ring, leading to the predicted formation
of a high energy and potentially reactive (E,E,Z)-triene.22 In contrast,
silylation of the phenol forces the carbonyl out-of-plane from the
benzene ring;23 subsequent rotation of the C8-C9 bond affords
the desired (E,Z,Z)-macrocyclic triene.
To advance 22 to a substrate for copper-mediated vinylic
amidation, the PMB ether was removed (DDQ), and the resulting
alcohol 23 was oxidized with PDC. Wittig olefination using the
Stork/Zhao protocol24 led to 24 as a single olefin isomer. The MOM
protecting group was cleanly removed under mild, acidic conditions
(CBr4, iPrOH),25 and the resulting alcohol was reprotected to afford
(Z)-vinyl iodide 3.
(13) For base-mediated transesterification of 4H-1,3-benzodioxin-4-ones, see:
Wu, Y.; Liao, X.; Wang, R.; Xie, X.-S.; De Brabander, J. K. J. Am. Chem.
Soc. 2002, 124, 3245.
(14) Brown, H. C.; Jadhav, P. K.; Bhat, K. S. J. Am. Chem. Soc. 1988, 110,
1535.
(15) Evans, D. A.; Kaldor, S. W.; Jones, T. K.; Clardy, J.; Stout, T. J. J. Am.
Chem. Soc. 1990, 112, 7001.
Amidation of 3 with oxime amide 4 using conditions reported
earlier for (E)-vinyl iodides10a led to low yield due to competitive
elimination under basic conditions. After a model study involving
evaluation of various ligands and bases,22 we found that 3 coupled
smoothly with 4, employing stoichiometric amounts of CuTC26-
N,N′-dimethyl-ethylenediamine (25)27 and K2CO3 as base (50 °C).
Oximidine II (2) was obtained after desilylation (HF-pyridine/
pyridine) with retention of olefin geometry. Synthetic 2 was
(16) Ukai, J.; Yamamoto, H. Tetrahedron Lett. 1983, 24, 4029.
(17) Farina, V.; Krishnan, B. J. Am. Chem. Soc. 1991, 113, 9585.
(18) Wender, P. A.; Sieburth, S. M.; Petraitis, J. J.; Singh, S. K. Tetrahedron
1981, 37, 3967.
(19) Conditions for RCM: the substrate was dissolved in CH2Cl2 (2.0 mM),
and then treated with the Ru catalyst (10 mol %). The mixture was then
heated to reflux.
(20) For example, a relatively stable Ru-alkylidene complex was isolated from
14. See Supporting Information.
(21) Hodgson, D. M.; Boulton, L. T.; Maw, G. N. Tetrahedron 1995, 51, 3713.
(22) See Supporting Information.
(23) Cf.: Shen, R.; Lin, C. T.; Bowman, E. J.; Bowman, B. J.; Porco, J. A., Jr.
Org. Lett. 2002, 4, 3103.
confirmed to be identical to natural oximidine II by the 1H and 13
C
(24) Stork, G.; Zhao, K. Tetrahedron Lett. 1989, 30, 2173.
(25) Lee, A. S. Y.; Hu, Y. J.; Chu, S. F. Tetrahedron 2001, 57, 2121.
(26) Allred, G. D.; Liebeskind, L. S. J. Am. Chem. Soc. 1996, 118, 2748.
(27) For use of diamine ligands in C-N bond formation, see: Klapars, A.;
Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 7421.
NMR spectra, mass spectrum, [R]D, HPLC, and TLC Rf values in
three solvent systems.
In summary, the first enantioselective synthesis of the salicylate
enamide macrolide oximidine II has been accomplished using the
RCM of a well-defined bis-diene substrate to construct the unusual
JA034030O
9
J. AM. CHEM. SOC. VOL. 125, NO. 20, 2003 6041