2184
Organometallics 2003, 22, 2184-2186
Tu n gsten -Ca ta lyzed Alk yn e Meta th eses in
Tr a n sition -Meta l Coor d in a tion Sp h er es: Ver sa tile New
Syn th eses of Meta lla m a cr ocycles
Eike B. Bauer,† Slawomir Szafert,‡ F. Hampel,† and J . A. Gladysz*,†
Institut fu¨r Organische Chemie, Friedrich-Alexander-Universita¨t Erlangen-Nu¨rnberg,
Henkestrasse 42, 91054 Erlangen, Germany, and Department of Chemistry, University of
Wroclaw, F. J oliot-Curie 14, 50-383 Wroclaw, Poland
Received March 12, 2003
Summary: The title reaction (10-15 mol % of (t-BuO)3W-
(tC-t-Bu), chlorobenzene, 80 °C) is applied to octahedral
and square-planar 18- and 16-valence-electron rhenium,
ruthenium, and platinum complexes with cis- or trans-
Ph2P(CH2)6CtCCH3 ligands. NMR analyses show ca.
90-70% educt conversions, and 17-membered diphos-
phine chelates have been isolated in 59-47% yields and
crystallographically characterized.
Here the resulting CtC linkage can be stereoselectively
reduced to either the (E)- or the (Z)-CdC isomer or
transformed to another functionality.
However, most presently available alkyne metathesis
catalysts require higher reaction temperatures, often
80-150 °C.5,6,8 Furthermore, intermediate metal alkyl-
idyne species, LnMtCR, are involved. Alkylidyne ligands
react with a broad spectrum of organic functional groups
and might be expected to be compatible with a rather
limited range of inorganic and organometallic systems
under high-temperature conditions. Indeed, the only
prior examples of alkyne metatheses in metal coordina-
tion spheres of which we are aware involve group VIII
metallocenes9sone of the most robust platforms for
organometallic chemistry. Accordingly, we selected a
standard catalyst, (t-BuO)3W(tC-t-Bu) (1),10 and set out
to investigate its reactions with alkyne-containing or-
ganometallic compounds featuring various coordination
geometries and electronic configurations.11
For initial studies, an alkyne-containing phos-
phine ligand was sought. Thus, the R,ω-dibromide
Br(CH2)6Br and NaCtCH were first reacted to give the
known terminal alkyne Br(CH2)6CtCH (2)12a in 66%
yield after workup. Terminal alkynes are normally poor
substrates for metathesis, but methylated alkynes that
can eliminate volatile 2-butyne are usually excellent
choices.5,13 Hence, 2 was treated with n-BuLi (-45 °C)
and then CH3I (0 °C) to give the known 2-alkyne
Br(CH2)6CtCCH3 (3; 71%).12b Subsequent reactions
with the diphenylphosphido nucleophiles MPPh2 (M )
Li, K) gave the target ligand Ph2P(CH2)6CtCCH3 (4)
in 81-55% yields.14
Over the past few years, alkene metathesis has been
applied with increasing frequency in inorganic and
organometallic synthesissin other words, within metal
coordination spheres.1-3 Despite the many conceivable
types of side reactions, it has proved possible to apply
Grubbs’ catalyst, Ru(dCHPh)(PCy3)2(Cl)2, to coordina-
tively unsaturated complexes, charged complexes, and
species containing CtC linkages or other functionalities
known to react with alkylidene ligands. However, one
disadvantage of alkene metathesis is that mixtures of
(E)- and (Z)-CdC isomers are typically obtained.4 For
this and other reasons, increasing attention is being
focused on the sister reaction, alkyne metathesis.5-8
† Friedrich-Alexander-Universita¨t Erlangen-Nu¨rnberg.
‡ University of Wroclaw.
(1) (a) Ruwwe, J .; Mart´ın-Alvarez, J . M.; Horn, C. R.; Bauer, E. B.;
Szafert, S.; Lis, T.; Hampel, F.; Cagle, P. C.; Gladysz, J . A. Chem. Eur.
J . 2001, 7, 3931 and references therein. (b) Review: Bauer, E. B.;
Gladysz, J . A. In Handbook of Metathesis; Grubbs, R. H., Ed.; Wiley-
VCH: Weinheim, Germany, in press.
(2) Representative contributions from other groups: (a) Rapenne,
G.; Dietrich-Buchecker, C.; Sauvage, J .-P. J . Am. Chem. Soc. 1999,
121, 994. (b) Weck, M.; Mohr, B.; Sauvage, J .-P.; Grubbs, R. H. J . Org.
Chem. 1999, 64, 5463. (c) Yasuda, T.; Abe, J .; Yoshida, H.; Iyoda, T.;
Kawai, T. Adv. Synth. Catal. 2002, 344, 705. (d) Hu¨erla¨nder, D.;
Kleigrewe, N.; Kehr, G.; Erker, G.; Fro¨hlich, R. Eur. J . Inorg. Chem.
2002, 2633. (e) Ogasawara, M.; Nagano, T.; Hayashi, T. Organome-
tallics 2003, 22, 1174 and earlier studies cited therein. (f) Chu-
churyukin, A. V.; Dijkstra, H. P.; Suijkerbuijk, B. M. J . M.; Klein
Gebbink, R. J . M.; van Klink, G. P. M.; Mills, A. M.; Spek, A. L.; van
Koten, G. Angew. Chem., Int. Ed. 2003, 42, 228; Angew. Chem. 2003,
115, 238.
(3) (a) Stahl, J .; Bohling, J . C.; Bauer, E. B.; Peters, T. B.; Mohr,
W.; Mart´ın-Alvarez, J . M.; Hampel, F.; Gladysz, J . A. Angew. Chem.,
Int. Ed. 2002, 41, 1871; Angew. Chem. 2002, 114, 1951. (b) Horn, C.
R.; Mart´ın-Alvarez, J . M.; Gladysz, J . A. Organometallics 2002, 21,
5386.
(9) (a) Brizius, G.; Pschirer, N. G.; Steffen, W.; Stitzer, K.; zur Loye,
H.-C.; Bunz, U. H. F. J . Am. Chem. Soc. 2000, 122, 12435 (see
compound 8e). (b) Sato, M.; Watanabe, M. Chem. Commun. 2002, 1574.
(10) Listemann, M. L.; Schrock, R. R. Organometallics 1985, 4, 74.
(11) Stoichiometric metathesis of (t-BuO)3W(tCR) species with
alkynyl and butadiynyl complexes, LnM(CtC)nR, have been reported:
(a) Latesky, S. L.; Selegue, J . P. J . Am. Chem. Soc. 1987, 109, 4731.
(b) Dembinski, R.; Szafert, S.; Haquette, P.; Lis, T.; Gladysz, J . A.
Organometallics 1999, 18, 5438.
(12) Previous data for 2 and 3: (a) Patwardhan, A. P.; Thompson,
D. H. Org. Lett. 1999, 1, 241; Langmuir 2000, 16, 10340. (b) Harms,
A. E.; Stille, J . R. Tetrahedron Lett. 1992, 33, 6565; Harms, A. E. Ph.D.
Thesis, Michigan State University, 1993.
(4) See: Lee, C. W.; Grubbs, R. H. Org. Lett. 2000, 2, 2145.
(5) Bunz, U. H. F. Acc. Chem. Res. 2001, 34, 998.
(6) (a) Fu¨rstner, A.; Guth, O.; Rumbo, A.; Seidel, G. J . Am. Chem.
Soc. 1999, 121, 11108. (b) Fu¨rstner, A.; Mathes, C.; Lehmann, C. W.
Chem. Eur. J . 2001, 7, 5299.
(7) Tsai, Y.-C.; Diaconescu, P. L.; Cummins, C. C. Organometallics
2000, 19, 5260.
(13) (a) Bray, A.; Mortreux, A.; Petit, F.; Petit, M.; Szymanska-
Buzar, T. J . Chem. Soc., Chem. Commun. 1993, 197. (b) Analogues of
5 with the terminal-alkyne-containing phosphine Ph2P(CH2)6CtCH
were prepared, but attempted metathesis did not give detectable
amounts of 8.
(8) (a) Brizius, G.; Bunz, U. H. F. Org. Lett. 2002, 4, 2829. (b) Grela,
K.; Ignatowska, J . Org. Lett. 2002, 4, 3747. (c) Miljanic´, O. S.; Vollhardt,
K. P. C.; Whitener, G. D. Synlett 2003, 29.
(14) All new compounds have been characterized by microanalysis,
NMR (1H, 13C, 31P) and IR spectroscopy, and mass spectrometry, as
described in the Supporting Information.
10.1021/om030195u CCC: $25.00 © 2003 American Chemical Society
Publication on Web 04/29/2003