Organic Letters
Letter
On the basis of the experiments described above, the
proposed reaction mechanisms are shown in Scheme 6. With
bridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
Scheme 6. Proposed Mechanism
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This research was supported by the National Natural Science
Foundation of China (21871234) and the Zhejiang Provincial
NSFC for Distinguished Young Scholars (LR15H300001).
HOAc as the solvent, the catalytic cycle would start with a C−
H activation by Pd(II) species to give a five-membered
cyclopalladate(II) intermediate A. Because the N atom is more
electronegative than the C atom, a ring opening of cyclic
diaryliodonium salt 2a then occurs at the C position, which has
a lower barrier, and a Pd(IV) complex B would be generated,
which is the key step that determines the regioselectivity of this
reaction. A reductive elimination would give the C−C coupled
intermediate C. After sequential decarboxylation (D), oxidative
addition (E), and reductive elimination, carbazole product 4a
would form. When DMF is used as the solvent with Ph2POEt
as an additive, a Pd(0)/Pd(II) catalytic cycle instead of the
aforementioned Pd(II)/Pd(IV) pathway is proposed. The
catalytic cycle would start with the ring opening of cyclic
diaryliodonium salt 2a by in situ-generated Pd(0) to give
Pd(II) species I, which would be attacked by indole-2-
carboxylic acids 1a to give intermediate II. The following key
step, N−H activation, might generate a five-membered
cyclopalladate(II) species III that would undergo sequential
reductive elimination, oxidative addition, decarboxylation, and
reductive elimination to give phenanthridine product 3aa.
In summary, we have successfully developed a cascade π-
extended decarboxylative annulation (PEDA) strategy for the
construction of privileged phenanthridine and benzocarbazole
scaffolds from commercially available indole-2-carboxylic acids
and readily available cyclic diaryliodonium salts. This highly
step economical process involves the Pd(II)-catalyzed site-
selective ortho N1 or C2 arylation followed by tandem
intramolecular decarboxylative annulation. The key is the
successful development of a two-in-one traceless directing
group strategy by which the carboxylic acid functionality was
employed as both a directing group for the Pd-catalyzed N−
H/C−H arylation and a reactive group for the cascade
intramolecular decarboxylative annulation.
REFERENCES
■
(1) (a) Walker, S. R.; Carter, E. J.; Huff, B. C.; Morris, J. C. Chem.
Rev. 2009, 109, 3080−3098. (b) Kochanowska-Karamyan, A. J.;
Hamann, M. T. Chem. Rev. 2010, 110, 4489−4497.
(2) (a) Taylor, R. D.; MacCoss, M.; Lawson, A. D. G. J. Med. Chem.
2014, 57, 5845−5859. (b) Fan, Y.; Wu, J.; Cheng, X.; Zhang, F.;
Feng, L. Eur. J. Med. Chem. 2018, 146, 554−563. (c) Fan, Y.; Cheng,
X.; Wu, J.; Liu, M.; Zhang, F.; Xu, Z.; Feng, L. Eur. J. Med. Chem.
2018, 146, 1−14.
(3) (a) Baik, C.; Kim, D.; Kang, M.-S.; Song, K.; Kang, S. O.; Ko, J.
Tetrahedron 2009, 65, 5302−5307. (b) Yan, L.; Zhao, D.; Lan, J.;
Cheng, Y.; Guo, Q.; Li, X.; Wu, N.; You, J. Org. Biomol. Chem. 2013,
11, 7966−7977.
(4) For a review, see: Sandtorv, A. H. Adv. Synth. Catal. 2015, 357,
2403−2435.
(5) For reviews, see: (a) Lyons, T. W.; Sanford, M. S. Chem. Rev.
2010, 110, 1147−1169. (b) Zhang, F.; Spring, D. R. Chem. Soc. Rev.
2014, 43, 6906−6919. (c) Chen, Z.; Wang, B.; Zhang, J.; Yu, W.; Liu,
Z.; Zhang, Y. Org. Chem. Front. 2015, 2, 1107−1295. (d) Wu, Y.;
Wan, Y.; Zhang, F. Curr. Org. Synth. 2018, 15, 781−792. (e) Wang,
D.-Y.; Guo, S.-H.; Pan, G.-F.; Zhu, X.-Q.; Gao, Y.-R.; Wang, Y.-Q.
Org. Lett. 2018, 20, 1794−1797.
(6) For a review, see: Leitch, J. A.; Bhonoah, Y.; Frost, C. G. ACS
Catal. 2017, 7, 5618−5627 and references therein.
(7) Cacchi, S.; Fabrizi, G. Chem. Rev. 2005, 105, 2873−2920.
(8) (a) Wang, X.; Lane, B. S.; Sames, D. J. Am. Chem. Soc. 2005, 127,
4996−4997. (b) Bressy, C.; Alberico, D.; Lautens, M. J. Am. Chem.
Soc. 2005, 127, 13148−13149. (c) Stuart, D. R.; Fagnou, K. Science
2007, 316, 1172−1175. (d) Yang, S.; Sun, C.; Fang, Z.; Li, B.; Li, Y.;
Shi, Z. Angew. Chem., Int. Ed. 2008, 47, 1473−1476; Angew. Chem.
2008, 120, 1495−1498. (e) Lebrasseur, N.; Larrosa, I. J. Am. Chem.
Soc. 2008, 130, 2926−2927. (f) Potavathri, S.; Pereira, K. C.;
Gorelsky, S. I.; Pike, A.; LeBris, A. P.; DeBoef, B. J. Am. Chem. Soc.
2010, 132, 14676−14681. (g) Pintori, D. G.; Greaney, M. F. J. Am.
Chem. Soc. 2011, 133, 1209−1211. (h) Song, W.; Ackermann, L.
Angew. Chem., Int. Ed. 2012, 51, 8251−8254; Angew. Chem. 2012,
124, 8376−8379. (i) Qiu, X.; Wang, P.; Wang, D.; Wang, M.; Yuan,
Y.; Shi, Z. Angew. Chem., Int. Ed. 2019, 58, 1504−1508; Angew. Chem.
2019, 131, 1518−1522. (j) Qiu, X.; Deng, H.; Zhao, Y.; Shi, Z. Sci.
Adv. 2018, 4, No. eaau6468.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge at
(9) For reviews about linear diaryliodonium salts, see: (a) Merritt, E.
A.; Olofsson, B. Angew. Chem., Int. Ed. 2009, 48, 9052−9070; Angew.
Chem. 2009, 121, 9214−9234. (b) Grushin, V. V. Chem. Soc. Rev.
2000, 29, 315−324. (c) Yoshimura, A.; Zhdankin, V. V. Chem. Rev.
2016, 116, 3328−3435.
(10) Selected methods involving linear diaryliodonium salts:
(a) Zhang, F.; Das, S.; Walkinshaw, A. J.; Casitas, A.; Taylor, M.;
Suero, M. G.; Gaunt, M. J. J. Am. Chem. Soc. 2014, 136, 8851−8854.
Experimental procedures and spectroscopic character-
Accession Codes
CCDC 1951128 contains the supplementary crystallographic
data for this paper. These data can be obtained free of charge
D
Org. Lett. XXXX, XXX, XXX−XXX