4
Tetrahedron Letters
C. Y.; Akomeah, M. J. Org. Chem. 2009, 74, 6362-6364; (c) Dai,
P.; Dussault, P. H. Org. Lett. 2005, 7, 4333-4335; (d) Dussault, P.
H.; Lee, H.-J.; Liu, X. J. Chem. Soc., Perkin Trans. 1, 2000, 3006-
3013.
8. Liu, W.; Li, Y.; Liu, K.; Li, Z. J. Am. Chem. Soc. 2011, 133,
10756-10759.
9. (a) Lv, L.; Snider, B. B.; Li, Z. J. Org. Chem. 2017, 82, 5487-
5491; (b) Lv, L.; Shen, B.; Li, Z. Angew. Chem. Int. Ed. 2014, 53,
4164-4167.
10. Gandhi, H.; O’Reilly, K.; Gupta, M. K.; Horgan, C.; O’Leary, E.
M. RSC Adv. 2017, 7, 19506-19556.
11. (a) Zhao, L.; Wang, Y.; Ma, Z.; Wang, Y. Inorg. Chem. 2017, 56,
8166-8174; (b) Yang, W.-C.; Weng, S.-S.; Ramasamy, A.;
Rajeshwaren, G.; Liao, Y.-Y.; Chen, C.-T. Org. Biomol. Chem.
2015, 13, 2385-2392; (c) Liu, K.; Li, Y.; Zheng, X.; Liu, W.; Li, Z.
Tetrahedron 2012, 68, 10333-10337.
12. (a) Cheng, J.-K.; Shen, L.; Wu, L.-H.; Hu, X.-H.; Loh, T.-P.
Chem. Commun. 2017, 53, 12830-12833; (b) Zong, Z.; Lu, S.;
Wang, W.; Li, Z. Tetrahedron Lett. 2015, 56, 6719-6721.
13. (a) Lu, S.; Qi, L.; Li, Z. Asian J. Org. Chem. 2017, 6, 313-321; (b)
Lan, Y.; Yang, C.; Xu, Y.-H.; Loh, T.-P. Org. Chem. Front. 2017,
4, 1411-1415; (c) Cheng, J.-K.; Loh, T.-P. J. Am. Chem. Soc.
2015, 137, 42-45; (d) Banerjee, A.; Santra, S. K.; Khatun, N.; Ali,
W.; Patel, B. K. Chem. Commun. 2015, 51, 15422-15425; (e)
Jiang, J.; Liu, J.; Yang, L.; Shao, Y.; Cheng, J.; Bao, X.; Wan, X.
Chem. Commun. 2015, 51, 14728-14731; (f) Banerjee, A.; Santra,
S. K.; Mishra, A.; Khatun, N.; Patel, B. K. Org. Biomol. Chem.
2015, 13, 1307-1312; (g) Schweitzer-Chaput, B.; Demaerel, J.;
Engler, H.; Klussmann, M. Angew. Chem. Int. Ed. 2014, 53, 8737-
8740.
Scheme 6. Proposed reaction mechanism.
In conclusion, we have developed silver-catalyzed
sulfonylation-peroxidation of alkenes with sulfonyl hydrazides
and T-hydro. A variety of -sulfonyl peroxides were synthesized
by the developed three-component peroxidation strategy. In
addition, epoxidation and reduction of the obtained β-sulfonyl
peroxides were studied. Further studies on the scope, mechanism,
and synthetic applications of this sulfonylation-peroxidation of
alkenes are in progress.
Acknowledgment. Financial support from the National
Natural Science Foundation of China (21672259).
14. (a) Zhang, H.-Y.; Ge, C.; Zhao, J.; Zhang, Y. Org. Lett. 2017, 19,
5260-5263; (b) Shi, E.; Liu, J.; Shao, Y.; Wang, H.; Lv, Y.; Ji, M.;
Bao, X.; Wan, X. J. Org. Chem. 2016, 81, 5878-5885.
15. Chen, Y.; Chen, Y.; Lu, S.; Li, Z. Org. Chem. Front. 2018, 5, 972-
976.
Supporting information available: Experimental procedures,
spectrum data, and NMR spectra of the compounds. This
material is available free of charge via the Internet at
16. Wang, H.; Chen, C.; Liu, W.; Zhu, Z. Beilstein J. Org. Chem.
2017, 13, 2023-2027.
17. Terent’ev, A. O.; Sharipov, M. Y.; Krylov, I. B.; Gaidarenko, D.
V.; Nikishin, G. I. Org. Biomol. Chem. 2015, 13, 1439-1445.
18. (a) Lu, S.; Tian, T.; Xu, R.; Li, Z. Tetrahedron Lett. 2018, 59,
2604-2606; (b) Lan, Y.; Chang, X.-H.; Fan, P.; Shan, C.-C.; Liu,
Z.-B.; Loh, T.-P.; Xu, Y.-H. ACS Catal. 2017, 7, 7120-7125.
19. (a) Ivachtchenko, A. V.; Golovina, E. S.; Kadieva, M. G.; Kysil,
V. M.; Mitkin, O. D.; Tkachenko S. E.; Okun, I. M. J. Med. Chem.
2011, 54, 8161-8173; (b) Huang, Y.; Huo, L.; Zhang, S.; Guo, X.;
Han, C. C.; Li, Y.; Hou, J. Chem. Commun. 2011, 47, 8904-8906;
(c) Whitham, G. H. Organosulfur Chemistry; Oxford University,
New York, 1995; (d) Simpkins, N. S. Sulfones in Organic
Synthesis; Pergamon: Oxford, 1993.
20. (a) He, F.-S.; Cen, X.; Yang, S.; Zhang, J.; Xia, H.; Wu, J. Org.
Chem. Front. 2018, 5, 2437-2441; (b) Zhang, J.; An, Y.; Wu, J.
Chem. Eur. J. 2017, 23, 9477-9480; (c) Choudhuri, K.; Achar, T.
K.; Mal, P. Adv. Synth. Catal. 2017, 359, 3566-3576; (d) Wang,
L.; Chen, M.; Qi, L.; Xu, Z.; Li, W. Chem. Commun. 2017, 53,
2056-2059; (e) Wan, X.; Sun, K.; Zhang, G. Sci. China Chem.
2017, 60, 353-357; (f) Liu, C.; Ding, L.; Guo, G.; Liu, W. Eur. J.
Org. Chem. 2016, 910-912; (g) Yang, D.; Huang, B.; Wei, W.; Li,
J.; Gu, L.; Liu, Y.; Ding, J.; Sun, P.; Wang, H. Green. Chem.
2016, 18, 5630-5634; (f) Koike T.; Akita, M. Org. Chem. Front.
2016, 3, 1345-1349; (g) Tang, Y.; Zhang, Y.; Wang, K.; Li, X.;
Xu, X.; Du, X. Org. Biomol. Chem. 2015, 13, 7084-7090; (h)
Taniguchi, N. J. Org. Chem. 2015, 80, 7797-7802; (i) Singh, A.
K.; Chawla, R.; Keshari, T.; Yadav, V. K.; Yadav, L. D. S. Org.
Biomol. Chem. 2014, 12, 8550-8554; (j) Wei, W.; Liu, C.; Yang,
D.; Wen, J.; You, J.; Suo, Y.; Wang, H. Chem. Commun. 2013,
49, 10239-10241; (k) Lu, Q.; Zhang, J.; Wei, F.; Qi, Y.; Wang, H.;
Liu, Z.; Lei, A. Angew. Chem. Int. Ed. 2013, 52, 7156-7159; (l)
Xi, C.; Lai, C.; Chen, C.; Wang, R. Synlett 2004, 1595-1597.
21. Recent reviews: (a) Chen, R.; Chen, J.; Zhang, J.; Wan, X. Chem.
Rec. 2018, 18, 1-15; (b) Qiu, G.; Zhou, K.; Gao, L.; Wu, J. Org.
Chem. Front. 2018, 5, 691-705; (c) Hofman, K.; Liu, N.-W.;
Manolikakes, G. Chem. Eur. J. 2018, 24, DOI:
References and notes
1. For representative reviews, see: (a) Lan, X.; Wang, N.; Xing, Y.
Eur. J. Org. Chem. 2017, 5821-5851; (b) Yi, H.; Zhang, G.;
Wang, H.; Huang, Z.; Wang, J.; Singh, A. K.; Lei, A. Chem. Rev.
2017, 117, 9016-9085; (c) Xuan, J.; Studer, A. Chem. Soc. Rev.
2017, 46, 4329-4346; (d) Yu, J.-T.; Pan, C. Chem. Commun. 2016,
52, 2220-2236; (e) Studer, A.; Curran, D. P. Angew. Chem. Int.
Ed. 2016, 55, 58-102; (f) Clark, A. J. Eur. J. Org. Chem. 2016,
2231-2243; (g) Kindt, S.; Heinrich, M. R. Synthesis 2016, 48,
1597-1606; (h) Reiser, O. Acc. Chem. Res. 2016, 49, 1990-1996;
(i) Cao, M. Y.; Ren, X.; Lu, Z. Tetrahedron Lett. 2015, 56, 3732-
3742; (j) Egami, H.; Sodeoka, M. Angew. Chem. Int. Ed. 2014, 53,
8294-8308.
2. (a) Casteel, D. A. Nat. Prod. Rep. 1999, 16, 55-73; (b) Yin, H.;
Xu, L.; Porter, N. A. Chem. Rev. 2011, 111, 5944-5972; (c)
Posner, G. H.; O’Neill, P. M. Acc. Chem. Res. 2004, 37, 397-404;
(d) Tang, Y.; Dong, Y.; Vennerstrom, J. L. Med. Res. Rev. 2004,
24, 425-448; (e) O'Neill, P. M.; Posner, G. H. J. Med. Chem.
2004, 47, 2945-2964.
3. (a) The Chemistry of Peroxides; Rappoport, Z. Ed.; Wiley:
Chichester, U.K., 2006; Vol. 2; (b) Peroxide Chemistry; Adam,
W. Ed.; Wiley-VCH: Weinheim, Germany, 2000; (c) Murahashi,
S.-I.; Zhang, D. Chem. Soc. Rev. 2008, 37, 1490-1501.
4. (a) Meier, G.; Braun, T. Angew. Chem. Int. Ed. 2011, 50, 3280-
3284; (b) Tokuyasu, T.; Kunikawa, S.; McCullough, K. J.;
Masuyama, A.; Nojima, M. J. Org. Chem. 2005, 70, 251-260; (c)
Reeves, C. E.; Penkett, S. A. Chem. Rev. 2003, 103, 5199-5218.
5. (a) Kharasch, M. S.; Pauson, P.; Nudenberg, W. J. Org. Chem.
1953, 18, 322-327; (b) Kharasch, M. S.; Fono, A. J. Org. Chem.
1958, 23, 324-325; (c) Kharasch, M. S.; Fono, A. J. Org. Chem.
1959, 24, 72-78.
6. (a) Sevin, F.; McKee, M. L. J. Am. Chem. Soc. 2001, 123, 4591-
4600; (b) Active Oxygen in Chemistry; Foote, C. S.; Valentine, J.
S.; Greenberg, A.; Liebman, J. F. Eds.; Blackie Academic: New
York, 1995; (c) Lissi, E. A.; Encinas, M. V.; Lemp, E.; Rubio, M.
A. Chem. Rev. 1993, 93, 699-723; (d) Kearns, D. R. Chem. Rev.
1971, 71, 395-427.
10.1002/chem.201705470; (d) Glass, R. S. Top. Curr. Chem. (Z)
2018, 376:22; (e) Zhu, J.; Yang, W.-C.; Wang, X.-d.; Wu, L. Adv.
Synth. Catal. 2018, 360, 386-400.
22. A representative review: Yang, F.-L.; Tian, S.-K. Tetrahedron
Lett. 2017, 58, 487-504.
7. Some examples for synthesis of peroxides by the transformation
of hydroperoxides: (a) Spantulescu, M. D.; Boudreau, M. A.;
Vederas, J. C. Org. Lett. 2009, 11, 645-648; (b) Hou, Y.; Meyers,