X. Zhang et al. / Bioorg. Med. Chem. Lett. 13 (2003) 1157–1160
1159
the NH off the pyrazinone ring, making it a better
H-bond donor, thus increasing binding affinity. The
phenylpropyl seems to cover a salt bridge formed by
Asp-Arg of the enzyme. However, the low solubility of
3h prevented it from being further evaluated in a func-
tional assay. Modification of the physical properties is
desired to further progress this series of inhibitors.
Table 2. SAR of the side chain R2 in compound 3
In summary, we have designed a 3-amino bicyclic pyra-
zinone scaffold that effectively replaces a dipeptide seg-
ment in a hexapeptide lead. By further manipulation of
the side chains of the scaffold, a series of potent non-
peptidic inhibitors of HCV NS3 was obtained. Because
of the correct alignment of the CO and NH, coupled
with rigidity of the bicyclic pyrazinone ring, we believe
this scaffold could be effective as a general b-sheet
mimetic that will find use in peptide chemistry and pro-
tease inhibitor design.
Compd
R2
IC50, mM
3m
3n
3o
3p
3q
3r
H
Me
Et
Pr
n-Bu
i-Bu
0.19
0.32
0.23
0.18
0.16
0.17
0.20
0.24
0.11
0.06
0.09
0.06
0.04
0.02
3s
3t
C6H11CH2
C6H5CH2
3,4-HOC6H3CH2
m-MeOC6H4CH2
2-Picolyl
m-FC6H4CH2
m-NO2C6H4CH2
m-CF3C6H4CH2
3u
3v
3w
3x
3y
3i
Acknowledgements
We thank Lorraine Gorey-Feret and James L. Meek
for measurement of IC50, Charles Kettner for helpful
discussions on aminoboronic acids as serine protease
inhibitors.
References and Notes
1. Cohen, J. Science 1999, 285, 26.
2. Kwong, A.; Kim, J.; Rao, G.; Lipovsek, D.; Raybuck, S.
Antiviral Res. 1998, 40, 1.
3. Kolykhalov, A.; Mihalik, K.; Feinstone, S.; Rice, C. J.
Virol. 2000, 74, 2046.
4. Walker, M. Drug Discov. Today 1999, 4, 518.
5. Love, R.; Parge, H. E.; Wickersham, J. A.; Hostomsky, Z.;
Habuka, N.; Moomaw, E. W.; Adachi, T.; Hostomska, Z. Cell
1996, 87, 331.
6. Kim, J. L.; Morgenstern, K. A.; Griffith, J. P.; Dwyer,
M. D.; Thomson, J. A.; Murcko, M. A.; Lin, C.; Caron, P. R.
Structure 1998, 6, 89.
7. Love, R.; Parge, H. E.; Wickersham, J. A.; Hostomsky, Z.;
Habuka, N.; Moomaw, E. W.; Adachi, T.; Margosiak, S.;
Dagostino, E.; Hostomska, Z. Clin. Diagn. Virol. 1998, 10,
151.
Figure 2. Inhibitor 3h modeled into the active site of HCV-NS3.
8. Ingallinella, P.; Bianchi, E.; Ingenito, R.; Koch, U.; Stein-
kuehler, C.; Altamura, S.; Pessi, A. Biochemistry 2000, 39,
12898.
9. Llinas-Brunet, M.; Bailey, M.; Deziel, R.; Fazal, G.; Gorys,
V.; Goulet, S.; Halmos, T.; Maurice, R.; Poirier, M.; Poupart,
M.; Rancourt, J.; Thibeault, D.; Wernic, D.; Lamarre, D.
Bioorg. Med. Chem. Lett. 1998, 8, 2719.
the important features that maybe involved in binding
of 3h in the active site. The computer model was based
on the structure of HCV protease, PDB file 1jxp.22
Because of the flexibility of R2 and R3 of 3h, multiple
calculations having different starting conformations
were carried out. Other than covalent attachment of the
ligand to the catalytic serine, the initial conformations
were generated at random and had little overlap. After
minimization and short molecular dynamics simulation
runs, using the method of Luty et al.,23 a predominant
binding mode emerged and is illustrated in Figure 2. In
this model, the R2 grouppoints away from the enzyme
surface into the solvent, explaining the flat SAR of R2.
Inhibitor 3h makes three H-bond interactions with the
enzyme backbone, a pair from the pyrazinone CO and
NH, the third from the P1 amide NH. We believe the
electron-withdrawing R2 groups increase the acidity of
10. Pessi, A. J. Peptide Sci. 2001, 7, 2.
11. Steinkuhler, C.; Biasiol, G.; Brunetti, M.; Urbani, A.;
Koch, U.; Cortese, R.; Pessi, A.; Francesco, R. Biochemistry
1998, 37, 8899.
12. Llinas-Brunet, M.; Bailey, M.; Fazal, G.; Ghiro, E.;
Gorys, V.; Golet, S.; Halmos, T.; Maurice, R.; Poirier, M.;
Poupart, M.-A.; Rancourt, J.; Thibeault, D.; Wernic, D.;
Lamarrer, D. Bioorg. Med. Chem. Lett. 2000, 10, 2267.
13. Han, W.; Hu, Z.; Jiang, X.; Decicco, C. Bioorg. Med.
Chem. Lett. 2000, 10, 711.
14. Narjes, F.; Brunetti, M.; Colarusso, S.; Gerlach, B.; Koch,
U.; Biasiol, G.; Fattori, D.; De Francesco, R.; Matassa, V.;
Steinkuehler, C. Biochemistry 2000, 37, 1849.