Scheme 1. Formation of Autoinducer 2 (AI-2)
Scheme 2. Proposed Mechanism for LuxS
boxed).15,18-20 In the initial steps (1a to 1c), an aldose-ketose
isomerization generates a ketone at the C3 position on the
carbohydrate moiety. Similar to other aldose-ketose isomer-
ases, LuxS also contains a divalent metal ion in the active
site.21-23 However, aldose-ketose isomerization through two
bonds, as proposed in the LuxS reaction, is unprecedented
for enzyme-catalyzed transformations.24,25 Thus, LuxS sports
an intriguing mechanism on its own. In the final step of the
proposed mechanism (2 in Scheme 2), a base in LuxS
abstracts the C4 proton and eliminates the homocysteinyl
thiol, and then the enol intermediate formed spontaneously
rearranges into the DPD product. Hence, from a mechanistic
point of view, LuxS is analogous to S-adenosylhomocysteine
hydrolase.26,27 As proposed, both generate a C3-ketone
intermediate before cleaving the carbon-sulfur bond via
â-elimination. On the other hand, the two enzymes differ in
the way ketone intermediates are generated. The AdoHcy
hydrolase produces the C3 ketone via nicotinamide adenine
dinucleotide (NAD)-dependent redox chemistry,26,27 whereas
LuxS may produce the putative C3 ketone intermediate via
an aldo-ketose isomerization. In essence LuxS possesses the
function of both an aldo-ketose isomerase and a lysase.
The ubiquitous AI-2 formation pathway is found in about
half of bacterial species (see Scheme 1).3,5 It begins with
S-adenosyl-L-homocysteine (AdoHcy), a common product
of S-adenosyl-L-methionine (AdoMet)-dependent methyl-
ation, a large family of transformations present in all
organisms.7 AdoHcy is hydrolyzed to S-ribosyl-L-homocys-
teine (SRH) and adenine by S-adenosyl-L-homocysteine/
5′-methylthioadenosine nucleosidase (SAHN or MTAN,
EC 3.2.2.9).8-10 Then the enzyme LuxS cleaves S-ribosyl-
homocysteine to form L-homocysteine (Hcy) and 4,5-dihy-
droxy-2,3-pentanedione (DPD); the latter is the precursor of
autoinducer-2.11-15 LuxS is likely to be the enzyme ribosyl-
homocysteinase (EC 3.2.1.148; formerly S-ribosyl-L-homo-
cysteine hydrolase, EC 3.3.1.3), which was first described
by Duerre and co-workers in the 1960s.16,17
As shown in Scheme 2, Pei’s group and our group have
proposed a mechanism for LuxS (the overall reaction is
(7) S-Adenosylmethionine-Dependent Methyltransferases: Structures and
Functions; Cheng, X., Blumenthal, R., Eds.; World Scientific: Singapore,
River Edge, NJ, 1999.
(8) Cornell, K. A.; Swarts, W. E.; Barry, R. D.; Riscoe, M. K. Biochem.
Biophys. Res. Commun. 1996, 228, 724.
(9) Lee, J. E.; Cornell, K. A.; Riscoe, M. K.; Howell, P. L. Acta
Crystallogr., Sect. D 2001, 57, 150.
(10) Lee, J. E.; Cornell, K. A.; Riscoe, M. K.; Howell, P. L. Structure
2001, 9, 941.
(11) Schauder, S.; Shokat, K.; Surette, M. G.; Bassler, B. L. Mol.
Microbiol. 2001, 41, 463.
(12) Surette, M. G.; Miller, M. B.; Bassler, B. L. Proc. Natl. Acad. Sci.
U.S.A. 1999, 96, 1639.
(13) Taga, M. E.; Semmelhack, J. L.; Bassler, B. L. Mol. Microbiol.
2001, 42, 777.
(14) Winzer, K.; Hardie, K. R.; Burgess, N.; Doherty, N.; Kirke, D.;
Holden, M. T.; Linforth, R.; Cornell, K. A.; Taylor, A. J.; Hill, P. J.;
Williams, P. Microbiology 2002, 148, 909.
(15) Zhao, G.; Wan, W.; Mansouri, S.; Alfaro, J. F.; Bassler, B. L.;
Cornell, K. A.; Zhou, Z. S. Bioorg. Med. Chem. Lett. 2003, 13, 3897.
(16) Duerre, J. A.; Miller, C. H. J. Bacteriol. 1966, 91, 1210.
(17) Duerre, J. A.; Baker, D. J.; Salisbury, L. Fed. Proc. 1971, 30, 88.
(18) Zhu, J.; Dizin, E.; Hu, X.; Wavreille, A. S.; Park, J.; Pei, D.
Biochemistry 2003, 42, 4717.
(19) Ritter, K. A. Dissertation, Washington State University, 2003.
(20) Zhu, J.; Hu, X.; Dizin, E.; Pei, D. J. Am. Chem. Soc. 2003, 125,
13379.
(21) Lewis, H. A.; Furlong, E. B.; Laubert, B.; Eroshkina, G. A.;
Batiyenko, Y.; Adams, J. M.; Bergseid, M. G.; Marsh, C. D.; Peat, T. S.;
Sanderson, W. E.; Sauder, J. M.; Buchanan, S. G. Structure (Camb) 2001,
9, 527.
(22) Ruzheinikov, S. N.; Das, S. K.; Sedelnikova, S. E.; Hartley, A.;
Foster, S. J.; Horsburgh, M. J.; Cox, A. G.; McCleod, C. W.; Mekhalfia,
A.; Blackburn, G. M.; Rice, D. W.; Baker, P. J. J. Mol. Biol. 2001, 313,
111.
(23) Hilgers, M. T.; Ludwig, M. L. Proc. Natl. Acad. Sci. U.S.A. 2001,
98, 11169.
(24) Schoss, J. V.; Hixon, M. S. In ComprehensiVe Biological Catalysis;
Sinnott, M., Ed.; Academic Press: San Diego, 1998; p 43.
(25) Watt, C. I. F. In ComprehensiVe Biological Catalysis; Sinnott, M.,
Ed.; Academic Press: San Diego, 1998; p 253.
(26) Takata, Y.; Yamada, T.; Huang, Y.; Komoto, J.; Gomi, T.; Ogawa,
H.; Fujioka, M.; Takusagawa, F. J. Biol. Chem. 2002, 277, 22670.
(27) Turner, M. A.; Yuan, C.-S.; Borchardt, R. T.; Hershfield, M. S.;
Smith, G. D.; Howell, P. L. Nat. Struct. Biol. 1998, 5, 369.
3044
Org. Lett., Vol. 6, No. 18, 2004