6
Tetrahedron
(s) cm-1; HR-ESI-MS: m/z calcd. for C18H16F3NO3SNa+
J = 8.1 Hz, 1H, NH), 7.54 – 7.48 (m, 1H, H20), 7.34 (s, 1H,
[M+Na]+: 406.0701, found: 406.0702.
H22), 7.25 (t, J = 7.4 Hz, 2H, H11), 7.21 – 7.16 (m, 3H, H10,
H12), 7.11 (t, J = 7.9 Hz, 1H, H19), 7.07 (d, J = 8.5 Hz, 2H,
H29), 6.73 – 6.67 (m, 3H, H30, H18), 5.94 (d, J = 1.5 Hz, 1H,
H14), 4.46 (td, J = 9.2, 4.0 Hz, 1H, H7), 4.20 (q, J = 7.7 Hz, 1H,
H2), 4.02 (m, 1H, H26), 3.97 (m, 2H, H24), 3.03 (dd, J = 14.3,
5.1 Hz, 1H, H27), 3.00 – 2.94 (m, 1H, H8), 2.84 (dd, J = 14.2,
8.3 Hz, 1H, H27’), 2.70 (dd, J = 13.9, 9.9 Hz, 1H, H8’), 2.01 (d,
J = 1.4 Hz, 3H, H16), 1.64 – 1.54 (m, 1H, H4), 1.50 (t, J = 7.3
Hz, 2H, H3), 0.88 (d, J = 6.5 Hz, 3H, H5), 0.83 (d, J = 6.4 Hz,
3H, H5’) ppm; 13C NMR (151 MHz, d6-DMSO): δ = 174.0 (C1),
173.4 (C6), 168.6 (C23), 166.9 (C25), 164.6 (C13), 156.6 (C28),
147.2 (C17), 141.4 (C21), 137.9 (C9), 130.5 (C29), 129.1 (C10),
128.0 (C11), 127.9 (C19), 126.2 (C12), 124.8 (C31), 122.7
(C18), 121.1 (C14), 117.9 (C20), 117.7 (C22), 115.4 (C30), 53.7
(C26), 53.4 (C7), 50.3 (C2), 42.7 (C24), 40.1 (C4), 37.4 (C8),
36.3 (C27), 26.3 (C16), 24.2 (C4), 22.8 (C5), 21.4 (C5’) ppm;
4.2.12. Z-12
Prepared according to GP, E-12 (28 mg, 0.1 mmol, 1.0 eq.) was
converted to Z-12 in 7.5 h yielding a colorless oil (27 mg, 97%)
after separation by flash column chromatography (50%
EtOAc/cyclohexane).
Rf = 0.11 (20% EtOAc/cyclohexane); [ ]
〈
25 = –76.5 (c = 0.8,
D
1
MeOH); H NMR (400 MHz, CDCl3): δ = 7.40 – 7.29 (m, 3H;
H1/H2), 7.24 – 7.19 (m, 2H; H3), 5.88 (t, J = 1.4 Hz, 1H; H8),
5.55 (d, J = 7.6 Hz, 1H; H10), 4.39 (p, J = 7.2 Hz, 1H; H11),
4.08 (m, 2H; H14), 2.44 (qd, J = 7.2, 1.1 Hz, 2H; H6), 1.20 (t,
J = 7.1 Hz, 3H; H15), 1.07 – 1.01 (m, 6H; H7/H12) ppm;
13C NMR (101 MHz, CDCl3): δ = 172.8 (C13), 166.3 (C9), 154.0
(C5), 139.8 (C4), 128.7 (C1/C2), 128.2 (C1/C2), 127.5 (C3),
121.0 (C8), 61.4 (C14), 47.9 (C11), 32.9 (C6), 18.2 (C12), 14.2
(C15), 12.2 (C7) ppm; IR (ATR): ν = 3297 (m), 2977 (w), 2935
(w), 1743 (s), 1660 (m), 1634 (s), 1539 (s), 1454 (m), 1378 (m),
1347 (m), 1301 (m), 1264 (m), 1185 (s), 1159 (s), 1081 (w), 1026
(m), 989 (w), 888 (m), 776 (m), 697 (s) cm-1; HR-ESI-MS: m/z
calcd. for C16H21NO3Na+ [M+Na]+: 298.1414, found: 298.1423.
HR-ESI-MS: m/z: calcd. for C36H44N5O7 [M+H]+: 658.3236;
+
found 658.3231.
5. Acknowledgments
We acknowledge financial support from the WWU Münster, and
the Verband der Chemischen Industrie (Kekulé Fellowship to
TM and FCI Fellowship to JBM). GAB thanks the Alexander
von Humboldt Foundation for funding a research stay at WWU
Münster (2019). JR acknowledges support from the EPSRC and
GSK through an industrial CASE studentship.
4.2.13. Z-13
Prepared according to GP, E-13 (29 mg, 0.1 mmol, 1.0 eq.) was
converted to Z-13 in 7.5 h yielding a colorless oil (22 mg, 77%)
after separation by flash column chromatography (20% EtOAc/
cyclohexane).
6. References and notes
Rf = 0.14 (20% EtOAc/cyclohexane); [ ]
〈
25 = –49.8 (c = 0.2,
D
1. (a) Dugave, C.; Demange, L. Chem. Rev. 2003, 103, 2475-2532.
(b) Metternich, J. B.; Gilmour, R. Synlett 2016, 27, 2541–2552;
(c) Pearson, C. M.; Snaddon, T. N. ACS Cent. Sci. 2017, 3, 922-
924; (d) Molloy, J. J.; Morack, T.; Gilmour. R. Angew. Chem. Int.
Ed. 2019, 58, 13654-13664.
2. For selected reviews on photocatalysis highlighting energy
transfer, see: (a) Marzo, L.; Pagire, S. K.; Reiser, O.; König, B.
Angew. Chem. Int. Ed. 2018, 57, 10034-10072; (b) Zhou, Q. -Q.;
Zou, Y. -Q.; Lu, L. -Q.; Xiao, W.-J. Angew. Chem. Int. Ed. 2019,
58, 1586–1604. (c) Metternich, J. B.; Mudd, R. J.; Gilmour, R.
Flavins in Photochemistry. Science of Synthesis: Photocatalysis in
Organic Synthesis, 2019, 391-404.
1
MeOH); H NMR (600 MHz, CDCl3): δ = 7.41 – 7.37 (m, 2H;
H2), 7.34 – 7.30 (m, 1H; H1), 7.25 – 7.22 (m, 2H; H3), 5.91 (t,
J = 1.4 Hz, 1H; H8), 5.56 (d, J = 8.6 Hz, 1H; H10), 4.37 (dd,
J = 8.6, 4.7 Hz, 1H; H11), 3.62 (s, 3H; H16), 2.44 – 2.39 (m, 2H;
H6), 1.85 (hd, J = 6.9, 4.7 Hz, 1H; H12), 1.04 (t, J = 7.4 Hz, 3H;
H7), 0.64 (d, J = 6.9 Hz, 3H; H13/H14), 0.50 (d, J = 6.9 Hz, 3H;
H13/H14) ppm; 13C NMR (151 MHz, CDCl3): δ = 172.2 (C15),
166.7 (C9), 153.7 (C5), 139.9 (C4), 129.0 (C2), 128.2 (C1),
127.6 (C3), 121.2 (C8), 57.2 (C11), 52.0 (C16), 33.4 (C6), 30.9
(C12), 18.8 (C13/C14), 17.5 (C13/C14), 12.1 (C7) ppm; IR
(ATR): ν = 3278 (m), 3055 (w), 2964 (m), 2879 (w), 1745 (s),
1655 (m), 1631 (s), 1539 (s), 1463 (m), 1436 (m), 1372 (m),
1322 (m), 1280 (m), 1253 (m), 1195 (s), 1179 (s), 1153 (s), 885
(m), 767 (m), 670 (s) cm-1; HR-ESI-MS: m/z calcd. for
C17H23NO3Na+ [M+Na]+: 312.1574, found: 312.1578.
3. Faßbender, S. I.; Molloy, J. J.; Mück-Lichtenfeld, C.; Gilmour, R.
Angew. Chem. Int. Ed. 2019, 59, 330-334.
4. (a) Singh, K.; Staig, S. J.; Weaver, J. J. Am. Chem. Soc. 2014, 136,
5275-5278; (b) Metternich, J. B.; Gilmour, R. J. Am. Chem. Soc.
2015, 137, 11254-11257; (c) Metternich, J. B.; Gilmour, R. J. Am.
Chem. Soc. 2016, 138, 1040-1045; (d) Metternich, J. B.;
Artiukhin, D. G.; Holland, M. C.; Von Bremen-Kuhne, M.;
Neugebauer, J.; Gilmour, R. J. Org. Chem. 2017, 82, 9955-9977;
(e) Cai, W.; Fan, H.; Ding, D.; Zhang, Y.; Wang, W. Chem.
Commun. 2017, 53, 12918 – 12921; (f) Kurzawa, T.; Harms, K;
Koert, U. Org. Lett. 2018, 20, 1388-1391. (g) Molloy, J. J.;
Metternich, J. B.; Daniliuc, C. G.; Watson, A. J. B.; Gilmour, R.
Angew. Chem. Int. Ed. 2018, 57, 3168-3172; (h) Hostmann, T.;
Molloy, J. J.; Bussmann K.; Gilmour, R. Org. Lett. 2019, 21,
10164-10168; (i) Neveselý, T.; Daniliuc, C. G.; Gilmour, R. Org.
Lett. 2019, 21, 9724-9728; (j) Onneken, C.; Bussmann, K.;
Gilmour, R. Angew. Chem. Int. Ed. 2020, 59, 330-334.
5. Hoffmann, R. W. Chem. Rev. 1989, 89, 1841-1860.
6. Arai, T.; Tokumaru, K. Chem. Rev. 1993, 93, 23-39.
7. Gozem, S.; Luk, H. L.; Schapiro, I.; Olivucci, M. Chem. Rev.
2017, 117, 13502-13565.
25
For comparative determination of the [α]D value Z-13 was
prepared according to GP-C (for details: see ESI), (Z)-3-
phenylpent-2-enoic acid (240 mg, 1.4 mmol, 1.0 eq.) was
converted to Z-13 in 16 h with
L-valine methylester
hydrochloride (268 mg, 1.6 mmol, 1.2 eq.) yielding a colourless
oil (328 mg, 83%) after flash column chromatography (50%
Et2O/n-pentane).
[α]D25 = –45.3 (c = 1, MeOH)
4.3. Isomerization of Peptide 15
E → Z Isomerization of peptide 15 was achieved by following a
modified procedure GP: The peptide (15.4 mg, 20.0 μmol,
1.0 eq.) and (–)-riboflavin (0.4 mg, 1.0 μmol, 0.05 eq.) was
dissolved in d6-DMSO and stirred under UV-light irradiation
(402 nm) at rt for 24 h. The crude reaction mixture was analyzed
by NMR-spectroscopy showing a clean reaction and a Z/E-ratio
of 76/24. An analytically pure sample of the Z-isomer for full
characterization was obtained by semi-preparative HPLC.
8. For examples of photo-isomerization of cinnamamides, see (a)
Lewis, F. D.; Elbert, J. E.; Upthagrove, A. L; Hale, P. D. J. Am.
Chem. Soc. 1988, 110, 5191-5192; (b) Lewis, F. D.; Elbert, J. E.;
Upthagrove, A. L.; Hale, P. D. J. Org. Chem. 1991, 56, 553-561;
(c) Shu, P.; Xu, H.; Zhang, L.; Li, J.; Liu, H.; Luo, Y.; Yang, X.;
Ju, Z.; Xu, Z. SynOpen 2019, 3, 103-107.
9. Walker, A. G.; Radda G. K. Nature 1967, 215, 1483.
10. Ultrafast laser pulse and time-resolved fluorescent measurements
1H NMR (600 MHz, d6-DMSO): δ = 10.04 (bs, 1H, NH), 9.34 (s,
1H, OH), 8.84 (bs, 1H, NH), 8.14 – 8.02 (bm, 4H, NH), 7.89 (d,
gave a quantum yield for ISC of
φT = 0.375 with a relatively long
phosphorescence lifetime of P = 27 µs, which makes riboflavin
τ