Notes and references
1 (a) J. C. Guillemin and J. M. Denis, Angew. Chem., Int. Ed. Engl., 1982,
21, 690; (b) D. R. Boyd, P. B. Coulder, R. Hamilton, N. T. Thompson,
N. D. Sharma and M. E. Stubbs, J. Chem. Soc., Perkin Trans 1, 1985,
2123; (c) B. Bodganovic and M. Velic, Angew. Chem., Int. Ed. Engl.,
1967, 6, 803; (d) D. R. Boyd, R. Hamilton, N. T. Thompson and M. E.
Stubbs, Tetrahedron Lett., 1979, 20, 3201.
2 G. Chen and H. C. Brown, J. Am. Chem. Soc., 2000, 122, 4217.
3 A. R. Battersby, D. G. Buckley, J. Staunton and P. J. Williams, J. Chem.
Soc., Perkin Trans 1, 1979, 2550.
4 W. Z. Potter and L. E. Hollister, in Basic and Clinical Pharmacology,
ed. B. G. Katzung, Appleton & Lange, Connecticut, 1998, pp.
483–491.
5 (a) J. Albert, M. Gómez, J. Granell, J. Sales and X. Solans,
Organometallics, 1990, 9, 1405; (b) J. Albert, J. Granell, J. Sales, X.
Solans and M. Font-Bardia, Organometallics, 1995, 14, 1393.
6 (a) For the synthesis of organometallic complexes with biologically
important ligands, see: K. Severin, R. Bergs and W. Beck, Angew.
Chem., Int. Ed., 1998, 37, 1634; (b) G. Jaouen, A. Vessiers and I. S.
Butler, Acc. Chem. Res., 1993, 26, 361; (c) H. Chen, S. Ogo and R. H.
Fish, J. Am. Chem. Soc., 1996, 118, 4993; (d) A. D. Ryabov, Angew.
Chem., Int. Ed., 1991, 30, 931.
Fig. 1 ORTEP plot of 2. Selected bond lenghts (Å) and angles (°): Pd–C(1)
2.002(2), Pd–N 2.109(2), Pd–P 2.2543(7), Pd–Cl 2.4010(7), O(1)–C(9)
1.164(4), O(2)–C(9) 1.294(4), N–C(12) 1.264(4), N–C(8) 1.483(3); C(1)–
Pd–N 81.78(9), C(1)–Pd–P 90.58(7), N–Pd–Cl 89.79(6), P–Pd–Cl
98.88(3).
7 Imines can undergo metallation on different carbon atoms, giving
organometallic complexes of different structures: endo-metallacycles, if
the CNN bond is included in the metallacycle, or exo-derivatives: A.
Crispini and M. Ghedini, J. Chem. Soc., Dalton Trans., 1997, 75.
8 Characterization data for 5: elemental analysis: calc. for
C28H27ClNPPd: C, 61.11, H, 4.94, N, 2.55; found: C 61.1, H 4.9, N
2.6%. 1H NMR (400 MHz, CDCl3): d 2.15 (s, 3H, Me); 2.36 (s, 3H,
Me); 2.81 (d, 2H, 3JHP 5.6 Hz, CH2Pd); 6.08 (s, 1H, aromatic); 6.74 (s,
1H, aromatic); 7.39–7.42 (m, 6H, aromatic); 7.63–7.70 (m, 9H,
aromatic); 8.49 (t, 1H, 4JHP 13.2, 3JHH 13.2 Hz, HCNN); 9.22 (br d, 1H,
3JHH 13.2 Hz, HN), 31P{1H} NMR (101.26 MHz, CDCl3), d 34.19 s.
9 Complete racemization of the Schiff base takes place during the
cyclopalladation reaction.
10 (a) The destabilizing effect of two soft ligands in mutual trans positions
has been called antisymbiosis, see: J. A. Davies and F. R. Hartley, Chem.
Rev., 1981, 81, 79; (b) R. G. Pearson, Inorg. Chem., 1973, 12, 712; (c)
R. Navarro and E. P. Urriolabeitia, J. Chem. Soc., Dalton Trans, 1999,
4111. Recently the term transphobia has been proposed to describe the
difficulty of coordinating mutually trans phosphine and aryl ligands in
palladium complexes, see (d) J. Vicente, J. A. Abad, A. D. Frankland
and M. C. Ramírez de Arellano, Chem. Eur. J., 1999, 5, 3066; (e) J.
Vicente, A. Arcas, D. Bautista and P. G. Jones, Organometallics, 1997,
16, 2127; (f) J. Vicente, J. A. Abad, F. S. Hernández-Mata and P. G.
Jones, J. Am. Chem. Soc., 2002, 124, 3848.
Fig. 2 ORTEP plot of 5. Selected bond lenghts (Å) and angles (°): Pd(1)–
C(10) 2.041(5), Pd(1)–N 2.067(3), Pd(1)–P(2) 2.2597(10), Pd(1)–Cl
2.4354(12), N–C(1) 1.275(5), C(1)–C(2) 1.454(6); C(10)–Pd(1)–N
82.39(17), C(10)–Pd(1)–P(2) 94.15(12), N–Pd(1)–Cl 88.67(12), P(2)–
Pd(1)–Cl 95.17(4).
base 2,4,6-Me3C6H2CHNNCH(Ph)COOMe, which contains the
2-phenylglycine fragment. These results show that the reactivity
of the amino acid fragment plays a crucial role in the synthesis
of 5.
In conclusion we have shown that the highly unstable NH
aldimines can be obtained by reaction between palladium
acetate and phenylalanine derivatives and that these species,
when coordinated to palladium, are so stable that can easily be
characterized and their crystal structure determined by X-ray
diffraction. The synthesis of new NH aldimines from other
biologically important ligands, in the presence of transition
metals, and experiments for clarifying the mechanism of the
formation of the NH aldimine derivatives are currently in
progress.
11 Crystallographic data: for 2: C39H39ClNO2PPd, Mw = 726.53, triclinic,
¯
P1, a = 10.9750(10), b = 11.0460(10), c = 15.1750(10) Å, a =
75.4050(10), b = 80.8580(10), g = 82.3680(10)°, V = 1749.4(3) Å3, Z
= 2. For 5884 observed reflections the final R (on F) factor was 0.034,
wR (on F2)
= 0.078 for I > 2s(I). CCDC 184188. For 5:
C28H27ClNPPd, Mw = 550.33, monoclinic, P21/c, a = 10.1670(10), b
= 24.9410(10), c = 10.6240(10) Å, b = 114.2640(10)°, V = 2456.0(3)
Å3, Z = 4. For 3524 observed reflections the final R (on F) factor was
0.045, wR (on F2) = 0.136 for I > 2s(I). CCDC 1841887. See http://
CIF or other electronic format.
12 Data collected in an MAR345 diffractometer with a image plate
detector, graphite monochromatized Mo-Ka radiation. The structures
were solved by Direct methods, using SHELXS computer program (G.
M. Sheldrick, 1977, A computer program for determination of crystal
structure, University of Göttingen, Germany) and refined by a full-
matrix least-squares method, with the SHELX97 computer program.
This work was supported by the Ministerio de Ciencia y
Tecnología (project: BQU2000-0652) and by the Comissionat
per a Universitats i Recerca (project: 2001SGR-00054).
CHEM. COMMUN., 2003, 528–529
529