5912
N. Chen et al. / Tetrahedron Letters 47 (2006) 5909–5913
References and notes
Li
1. (a) Lederer, E. J. Chem. Soc. 1949, 2115–2125; (b)
Freeman, G. G. Phytochemistry 1965, 5, 719–725; (c)
Sidwell, W. T. L.; Fritz, H.; Tamm, C. Helv. Chem. Acta
1971, 54, 207–215; (d) Farkas, L.; Soti, F.; Incze, M.;
Nogradi, M. Chem. Ber. 1974, 107, 3874–3877; (e) Ghosal,
S.; Reddy, J. P.; Lal, V. K. J. Pharm. Sci. 1976, 65, 772–
773.
MeO
O
OLi
MeO
O
O
6a
8a
SEMCl
SEMCl
TMS
2. (a) Naser-Hijazi, B.; Stolze, B.; Zanker, K. S. Second
Proceedings of the International Society of the Coumarin
Investigators; Springer: Berlin, 1994; (b) Murray, R. D. H.;
O
´
Mendez, J.; Brown, S. A. The Natural Coumarins:
MeO
O
+
O
O
MeO
O
O
Occurrence, Chemistry, and Biochemistry; J. Wiley: New
York, 1982.
7i
9
H3O+
TMS
3. (a) Zhi, L.; Tegley, C.; Kallel, E. A.; Marschke, K. B.;
Mais, D. E.; Gottardis, M. M.; Jones, T. K. J. Med. Chem.
1998, 41, 291–294; (b) Schmidt, J. M.; Trembley, G. B.;
Page, M.; Mercure, J.; Feher, M.; Dunn-Dufault, R.;
Peter, M. G.; Redden, P. R. J. Med. Chem. 2003, 46, 1289;
(c) Hajela, K.; Kapoor, K.; Kapil, R. Bioorg. Med. Chem.
1995, 3, 1417–1420; (d) Hajela, K.; Kapil, R. Eur. J. Med.
Chem. 1997, 32, 135–139; (e) Hajela, K.; Pandey, J.;
Dwidey, A.; Sarkhel, S.; Maulik, P. R.; Velumurugan, D.
Bioorg. Med. Chem. 1999, 7, 2083.
TMS
O
O
3e
MeO
O
10
Scheme 4. Proposed mechanism associated with regioselectivity.
4. (a) Pechmann, H.; Duisberg, C. Chem. Ber. 1884, 17, 929;
(b) Johnson, J. Org. React. 1942, 1, 210–265.
5. For Knoevenagel, Reformatsky and Wittig related reac-
tions, see: (a) Jones, G. Org. React. 1967, 15, 204; (b)
Brufola, G.; Fringuelli, F.; Piermatti, O.; Pizzo, F.
Heterocycles 1996, 43, 1257; (c) Shriner, R. L. Org. React.
1942, 1, 1–58; (d) Yavari, I.; Hekmat-Shoar, R.; Zonouzi,
A. Tetrahedron Lett. 1998, 2391–2394.
6. (a) Kadnikov, D.; Larock, R. J. Org. Chem. 2003, 24,
9423–9432; (b) Larock, R.; Doty, M. J.; Han, X. J. Org.
Chem. 1999, 64, 8770; (c) Larock, R.; Yum, E.; Doty, M.;
Sham, K. J. Org. Chem. 1995, 60, 3270.
7. (a) Wang, Q.; Finn, M. Org. Lett. 2000, 2, 4063; (b) Bose,
D.; Rudradas, A.; Babu, M. Tetrahedron Lett. 2002, 43,
9195–9197; (c) Kawassaki, T.; Yamamoto, Y. J. Org.
Chem. 2002, 67, 5138–5141.
8. (a) Kanojia, R.; Jain, N.; Ng, R.; Sui, Z.; Xu, J.
Preparation of tetracyclic heterocycles as selective estro-
gen receptor modulators (SERMs); WO2003053977, 2003;
US 71997520031121, 2004; (b) Jain, N.; Kanojia, R. M.;
Xu, J.; Guo, J. Z.; Pacia, E.; Lai, M.; Du, F.; Musto, A.;
In summary, we have developed a highly efficient and
divergent methodology to elaborate the 4-methyl group
in 4-methyl coumarins through anion chemistry. The
homoenolates are reactive enough to undergo reactions
with a wide range of electrophiles, including carbon
electrophiles. This procedure offered easy access to the
synthesis of coumarins with complex substitutions at
4-position. Application of this methodology was show-
cased with the synthesis of biologically important tetra-
cyclic ring systems 1.8
Supplementary data
Supplementary data (1H and 13C NMRs) associated
with this article can be found, in the online version, at
Cl
X
O
OSEM
i (for 1c)
O
OH
OSEM
HO
O
O
SEMO
O
O
1c, X=O
1d X=H2
7o
iv (for 1d)
OMe
Br
OMe
ii, iii
OMe
OMe
MeO
O
O
MeO
O
O
7q
14
Scheme 5. Synthesis of benzopyranobenzoxacane. Reagents and conditions: (i) 1 N HCl (aq)–THF–CH3CN (1:1:1), 3 h, followed by 2 N NaOH.
Yield, 96%. (ii) OsO4 (0.02 equiv), NaIO4 (4.0 equiv), 2,6-lutidine (2.0 equiv), dioxane–water (3:1) followed by NaBH4 (0.5 equiv). Yield 88%. (iii)
CBr4 (3.0 equiv), PPh3 (3.0 equiv), CH2Cl2, 12 h, rt. Yield, 85%. (iv) BBr3, CH2Cl2, 0 °C, rt, followed by work-up with 20% NaOH. Yield 65%.