2
M. S. Novikov et al. / Tetrahedron Letters xxx (2012) xxx–xxx
Cl
O
Cl
H
N
SiMe3
NH
HMDS
H
NH2
O
Cl
NH
N
R
Cl
R
O
R
R
O
1,2-Dichloro-
ethane
N
O
6
13
-
K2CO3, DMF
1
5
-
R1
Scheme 1. Proposed pathway to 2-chloroacetanilides.
14
1 - 5
Scheme 2. Synthesis of target uracil derivatives.
Table 1
Physical properties of 2-chloroacetanilides
of them proved to be active against any of the strains tested includ-
ing HIV-1, HIV-2, HSV-1, HSV-2, HCMV, VZV, Vaccinia virus, Para-
influenza-3 virus, Reovirus-1, Sindbis virus, Vesicular stomatitis
virus, Respiratory syncytial virus, Coxsackie virus B4 or Feline Cor-
ona Virus.20,21
In summary, while the target NNRTIs synthesized proved inac-
tive, a facile and high-yielding route to N-phenylacetamides was
developed, which should prove useful for many synthetic applica-
tions employing heterocyclic amides.
H
N
Cl
R
O
Compd
R
Rfa
Yield (%)
Mp (°C)
1
2
3
4
5
H
0.70
0.60
0.67
0.71
0.73
82
86
87
97
98
135–136.5
111.5–113
163–165
110–112
143–145
2-Me
4-Me
3,4-Me2
3,5-Me2
a
Ethyl acetate/hexane 1:1.
Acknowledgments
This work was supported by the Russian Foundation for Basic
Research (Grant 10-04-0056a). The authors would like to thank
Professor Jan Balzarini of the Rega Institute for antiviral evaluation
of synthesized compounds.
Table 2
Physical properties of 2-(1-benzyluracil-3-yl)-N-phenylacetamides
O
N
O
N
O
N
H
N
H
N
H
N
H
3C
N
N
Supplementary data
N
R
O
O
O
O
O
O
Supplementary data (specific experimental details for each of
the target compounds including 1H and 13C NMR data) associated
with this article can be found, in the online version, at http://
R1
6-13
15
16
Compd
R1
R
Rfa
Yield (%)
Mp (°C)
References and notes
6
7
8
9
10
11
12
13
15
16
H
H
H
H
H
0.57
0.65
0.61
0.63
0.48
0.59
0.56
0.64
0.71
0.78
96
90
84
90
84
83
78
87
90
96
212–213
175–176.5
248–250
219–220
201–202
221–222
222.5–224
214–215
197.5–198.5
125–127
2,5-Me2
1. (a) De La Rosa, M.; Kim, H. W.; Gunic, E.; Jenket, C.; Boyle, U.; Koh, Y.-H.;
Korboukh, I.; Allan, M.; Zhang, W.; Chen, H.; Xu, W.; Nilar, S.; Yao, N.;
Hamatake, R.; Lang, S. A.; Hong, Z.; Zhang, Z.; Girardet, J.-L. Bioorg. Med. Chem.
Lett. 2006, 16, 4444–4449; (b) Gagnon, A.; Amad, M. H.; Bonneau, P. R.;
Coulombe, R.; DeRoy, P. L.; Doyon, L.; Duan, J.; Garneau, M.; Guse, I.; Jakalian,
A.; Jolicoeur, E.; Landry, S.; Malenfant, E.; Simoneau, B.; Yoakim, C. Bioorg. Med.
Chem. Lett. 2007, 17, 4437–4441; (c) Yu, M.; Liu, X.; Li, Z.; Liu, S.; Pannecouque,
C.; Clercq, E. D. Bioorg. Med. Chem. Lett. 2009, 17, 7749–7754.
2. Al-Omary, F. A. M.; Abou-Zeid, L. A.; Nagi, M. N.; Habib, E.-S. E.; Abdel-Aziz, A.
A.-M.; El-Azab, A. S.; Abdel-Hamide, S. G.; Al-Omar, M. A.; Al-Obaid, A. M.; El-
Subbagh, H. I. Bioorg. Med. Chem. 2010, 18, 2849–2863.
3. (a) Zhang, Y.; Fang, H.; Feng, J.; Jia, Y.; Wang, X.; Xu, W. J. Med. Chem. 2011, 54,
5532–5539; (b) Wang, H.; Yu, N.; Chen, D.; Lee, K. C. L.; Lye, P. L.; Chang, J. W.
W.; Deng, W.; Ng, M. C. Y.; Lu, T.; Khoo, M. L.; Poulsen, A.; Sangthongpitag, K.;
Wu, X.; Hu, C.; Goh, K. C.; Wang, X.; Fang, L.; Goh, K. L.; Khng, H. H.; Goh, S. K.;
Yeo, P.; Liu, X.; Bonday, Z.; Wood, J. M.; Dymock, B. W.; Kantharaj, E.; Sun, E. T. J.
Med. Chem. 2011, 54, 4694–4720.
3,5-Me2
4-tBu
H
2-Me
4-Me
3,4-Me2
3,5-Me2
—
H
H
H
—
—
—
a
Ethyl acetate/1,2-dichloroethane 1:1.
amides 1–5 in 82–98% yield (Table 1).15 Notably, this occurred
without any of the tar-like by-products typically observed with
these reactions.
4. Bailey, P. D.; Mills, T. J.; Pettecrew, R.; Price, R. A. In Comprehensive Organic
Functional Group Transformations II; Elsevier: Vol. null, 2005. pp 201–294.
The target 2-(1-benzyluracil-3-yl)-N-phenylacetamides 6–13
were then obtained in excellent to almost quantitative yields
(78–96%, see Table 2) by alkylation of 1-benzyluracils16 14 with
the appropriate 2-chloroacetanilides 1–5 in the presence of a 1.5-
fold molar excess of K2CO3 in DMF as shown in Scheme 2.17
In an analogous fashion, N-phenylacetamides 15 and 16 were
synthesized starting with 1-benzylthymine18 and 1-(benzhy-
dryl)uracil,19 respectively. It should be noted that all the com-
pounds were obtained without suffering the intractable workups
or side products the typical procedures have been associated with,
thereby making this approach highly attractive to adaptation with
other heterocyclic compounds.
ˇ
5. (a) Sauter, F.; Stanetty, P. Monatsh. Chem. 1975, 106, 1111–1116; (b) Vejdelek,
Z.; Holubek, J.; Bartošová, M.; Protiva, M. Collect. Czech. Chem. Commun. 1982,
47, 3297–3305; (c) Vejdelek, Z.; Bartošová, M.; Protiva, M. Collect. Czech. Chem.
Commun. 1983, 48, 156–162; (d) Effland, R. C.; Helsley, G. C.; Tegeler, J. J. J.
Heterocycl. Chem. 1982, 19, 537–539.
ˇ
6. (a) Rudkevich, D. M.; Verboom, W.; Reinhoudt, D. N. J. Org. Chem. 1994, 59,
3683–3686; (b) Szmuszkovicz, J.; Chidester, C. G.; Laurian, L. G.; Scahill, T. A. J.
Org. Chem. 1986, 51, 5001–5002; (c) Kizuka, H.; Hanson, R. N. J. Med. Chem.
1987, 30, 722–726; (d) Wolfbeis, O. S.; Marhold, H. Monatsh. Chem. 1983, 114,
599–604.
7. Reddy, P. S. N.; Nagaraju, C. Synth. Commun. 1991, 21, 173–181.
8. Perez, M.; Ayerbe, N.; Fourrier, C.; Sigogneau, I.; Pauwels, P.; Palmier, C.; John,
G.; Valentin, J.; Halazy, S. Eur. J. Med. Chem. 1997, 32, 129–134.
9. (a) Deak, G.; Doda, M.; Gyorgy, L.; Hazai, L.; Sterk, L. J. Med. Chem. 1977, 20,
1384–1388; (b) Gall-Istok, K.; Sterk, L.; Toth, G.; Deak, G. J. Heterocycl. Chem.
1984, 21, 1045–1048.
Compounds 6–13, 15, and 16 were evaluated as inhibitors
against a large set of DNA and RNA viruses. Disappointingly, none
10. (a) Löfgren, N.; Tegnér, C.; Bonnichsen, R.; Virtanen, A. I. Acta Chem. Scand.
1955, 9, 493–496; (b) Byrnes, E. W.; McMaster, P. D.; Smith, E. R.; Blair, M. R.;