270
J. J.-W. Duan et al. / Bioorg. Med. Chem. Lett. 17 (2007) 266–271
Table 4. In vitro potency in pTACE, MMP-2, -3, -7, -12, aggrecanase, and WBAa
X
O
O
HN
N
H
O
N
H
O
O
N
Compound
–X–
pTACE
IC50 (lM)
MMP-2
Ki (lM)
MMP-3
Ki (lM)
MMP-7
Ki (lM)
MMP-12
Ki (lM)
MMP-13
Ki (lM)
Aggrecanase
(%) inh at 1 lM
WBA IC50
(lM)
b
b
b
b
b
52
53
54
55
56
57
58
59
–(CH2)2–
–CH2–
–O–
0.138
0.024
0.044
0.055
0.111
0.029
0.036
0.128
0.11
>3.33
>3.33
>3.33
>3.33
>3.33
>3.33
>3.33
—
—
—
—
29
0
—
b
—
b
—
b
—
b
—
>50
50
>4.50
>4.50
>4.50
>4.50
>4.50
>4.50
>6.37
>6.37
>6.37
>6.37
>6.37
>6.37
4.04
0.58
3.53
3.95
12
44
53
17
26
44
–N(Ac)–
–N(Piv)–
–N(nicotinoyl)–
–N(Ms)–
–N(Boc)–
14
b
—
>6.02
0.13
1.29
>50
18.4
12.6
14
1.31
3.72
1.03
>5.21
a All compounds were tested as racemic mixture.
b Not tested.
3. Duan, J.-W. J.; Lu, Z.; Wasserman, Z. R.; Liu, R.-Q.;
Covington, M. B.; Decicco, C. P. Bioorg. Med. Chem.
Lett. 2005, 15, 2970.
had good selectivity over all five MMPs and aggrecan-
ase, but failed to improve potency in the WBA notice-
ably. In contrast, several of the pyrrolidine-derived
spiro analogues exhibited promising activity in the
WBA. Compounds 55, 57, 58, and 59 all had IC50 values
under 20 lM. These compounds also maintained good
overall selectivity.
4. (a) Foley, L. H.; Palermo, R.; Dunten, O.; Wang, P.
Bioorg. Med. Chem. Lett. 2001, 11, 969; (b) Grams, F.;
Brandstetter, H.; D’Alo, S.; Geppert, D.; Krell, H.-W.;
Leinery, H.; Livi, V.; Menta, E.; Oliva, A.; Zimmermann,
G. Biol. Chem. 2001, 382, 1277; (c) Dunten, P.; Kammlott,
U.; Crowther, R.; Levin, W.; Foley, L. H.; Wang, P.;
Palermo, R. Protein Sci. 2001, 10, 923; (d) Brandstetter,
H.; Grans, F.; Glitz, D.; Lang, A.; Huber, R.; Bode, W.;
Krell, H.-W.; Engh, R. A. J. Biol. Chem. 2001, 276, 17405;
(e) Grams, F.; Brandstetter, H.; Engh, R. A.; Glitz, D.;
Krell, H.-W.; Livi, V.; Menta, E.; Moroder, L.; Muller, J.
C. D.; Roedern, E. G.; Zimmermann, G. In Matrix
Metalloproteinase Inhibitors in Cancer Therapy; Clenden-
inn, N. J., Appelt, K., Eds.; Humana Press: New Jersey,
2001; p 223; (f) Blagg, J. A.; Noe, M. C.; Wolf-Gouveia, L.
A.; Reiter, L. A.; Laird, E. R.; Chang, S.-P. P.; Danley, D.
E.; Downs, J. T.; Elliott, N. C.; Eskra, J. D.; Griffiths, R.
J.; Hardink, J. R.; Haugeto, A. I.; Jones, C. S.; Liras, J. L.;
Lopresti-Morrow, L. L.; Mitchell, P. G.; Pandit, J.;
Robinson, R. P.; Subramanyam, C.; Vaughn-Bowser, M.
L.; Yocum, S. A. Bioorg. Med. Chem. Lett. 2005, 15, 1807;
(g) Kim, S.-H.; Pudzianowski, A. T.; Leavitt, K. J.;
Barbosa, J.; McDonnell, P. A.; Metzler, W. J.; Rankin, B.
M.; Liu, R.; Vaccaro, V.; Pitts, W. Bioorg. Med. Chem.
Lett. 2005, 15, 2970.
In summary, a new series of TACE inhibitors was dis-
covered using a pyrimidine-2,4,6-trione as a hydroxa-
mate replacement. Even though pyrimidinetrione is a
significantly weaker ligand for zinc ion than hydroxamic
acid, highly potent TACE inhibitors have been identified
through optimization of the rest of the molecule. The
most potent compound 51 had an IC50 of 2 nM in the
pTACE-binding assay. To the best of our knowledge,
51 represents the first example of non-hydroxamate
TACE inhibitors with single digit nanomolar potency.
Some of the analogues also displayed moderate func-
tional activity in a cellular assay. However, further
improvement in functional activity is needed for these
inhibitors to be useful in vivo.
Acknowledgments
5. (a) Duan, J. J.-W.; Chen, L.; Wasserman, Z. R.; Lu, Z.;
Liu, R.-Q.; Covington, M. B.; Qian, M.; Hardman, K. D.;
Magolda, R. L.; Newton, R. C.; Christ, D. D.; Wexler, R.
R.; Decicco, C. P. J. Med. Chem. 2002, 45, 4954;
(b) Wasserman, Z. R.; Duan, J. J.-W.; Voss, M. E.; Xue,
C.-B.; Cherney, R. J.; Nelson, D. J.; Hardman, K. D.;
Decicco, C. P. Chem. Biol. 2003, 10, 215.
The authors thank John Giannaras, Sherrill Nurnberg,
and Paul Strzemienski for assistance in enzymatic and
cell assays.
6. Young, S. D.; Payne, L. S.; Thompson, W. J.; Gaffin, N.;
Lyle, T. A.; Britcher, S. F.; Graham, S. L.; Schultz, T. H.;
Deana, A. A.; Darke, P. L.; Zugay, J.; Schleif, W. A.;
Quintero, J. C.; Emini, E. A.; Anderson, P. S.; Huff, J. R.
J. Med. Chem. 1992, 35, 1702.
References and notes
1. (a) For a recent review of MMP inhibitors, see: Skiles, J.
W.; Gonnella, N. C.; Jeng, A. Y. Curr. Med. Chem. 2004,
11, 2911; (b) For a recent review of TACE inhibitors, see:
Le, G. T.; Abbenante, G. Curr. Med. Chem. 2005, 12,
2963.
7. Miller, D. G.; Wagner, D. D. M. J. Org. Chem. 1990, 55,
2924.
8. 4-(2-Methylquinolin-4-ylmethoxy)benzoyl chloride was
synthesized using the following sequence: (a) methyl
2. Breuer, E.; Frant, J.; Reich, R. Expert Opin. Ther. Patents
2005, 15, 253.