with chloroform (100 cm3) and washed with water (6 × 50 cm3).
The organic layer was dried over anhydrous Na2SO4 and
filtered. The solvent of the filtrate was removed in vacuo and
the residue was redissolved in 5 cm3 of chloroform/hexane (v/v,
5 : 1) and chromatographed on silica gel using chloroform/
hexane (v/v, 5 : 1) as eluent. The second band gives the desired
compound o-DEM(H)-C4-O-TPPH2 after re-crystallization in a
chloroform/methanol solution. Yield: 0.30 g, 89%. M.p. 108–
110 ЊC. IR (cmϪ1, in KBr): 3462 w, 3312w, 2962m, 1746m,
1728s, 1600m, 1471m, 1441m, 1356m, 1261s, 1094s, 1024s, 964s,
C55H46N4O5Er requires 1010.2805), 982.2499 ([M Ϫ H2O Ϫ
C2H4 ϩ H]ϩ, C53H42N4O5Er requires 982.2493). Anal. found
(calc.) for C55H47N4O6ErؒCH3OHؒH2O: C, 62.55 (62.43); H,
5.09 (4.96); N, 5.00 (5.20%).
[NdIII(o-DEM-C4-O-TPP)(H2O)] 3. Anhydrous NdCl3 (0.40
g, 1.6 mmol) was used. Yield: 0.27 g, 90%. M.p. > 300 ЊC. IR
(cmϪ1, in KBr): 3451s, 2960w, 2924m, 2862w, 1703m, 1625m,
1594s, 1574s, 1481s, 1450s, 1268m, 1207m, 989vs, 803s, 757s,
710s. UV-VIS in CHCl3, 20 ЊC, λmax/nm [log(ε/dm3 molϪ1 cmϪ1
)
1
800vs, 749m, 729m, 701s. H NMR (CDCl3): δ Ϫ2.77 (s, 2H),
in parentheses]: 419 (5.68), 550 (4.28), 594 (3.52). Fluorescence
data in CHCl3, 20 ЊC, λexc/nm: 422; λem/nm: 650, 715, 853, 890,
1074; Φem = 5.02 × 10Ϫ3; τ = 8.9 ns (650 nm). FAB-MS (ϩve
mode) m/z: 984 (M Ϫ H2O ϩ H)ϩ for 142Nd. ESI-HRMS
(ϩve mode, in CH3OH) m/z: 986.2526 ([M Ϫ H2O ϩ H]ϩ,
C55H46N4O5Nd requires 986.2581) and 958.2322 ([M Ϫ H2O Ϫ
C2H4 ϩ H]ϩ, C53H42N4O5Nd requires 958.2267). Anal. found
(calc.) for C55H47N4O6Nd: C, 66.02 (65.78); H, 4.84 (4.72); N,
5.65 (5.58%).
8.83–8.78 (m, 8H), 8.26–8.18 (m, 6H), 7.98–7.96 (m, 2H), 7.78–
7.71 (m, 9H), 7.34–7.28 (m, 2H), 3.87 (t, 2H), 3.69 (m, 4H), 2.55
(s, 1H), 1.26 (t, 2H), 1.01 (s, 2H), 0.87 (m, 6H), 0.48 (s, 2H).
UV-VIS in CHCl3, 20 ЊC, λmax/nm [log(ε/dm3 molϪ1 cmϪ1
)
in parentheses]: 419 (5.63), 514 (4.26), 548 (3.87), 590 (3.71),
649 (3.78). Fluorescence data in CHCl3, 20 ЊC, λexc/nm: 425,
514, 544, 594; λem/nm: 652, 715; Φem = 3.56 × 10Ϫ2; τ = 9.4 ns
(652 nm). FAB-MS (ϩve mode) m/z: 845 (M ϩ H)ϩ, 771
(M Ϫ CO2Et)ϩ and 629 [M Ϫ (CH2)4CH(CO2Et)2]ϩ. ESI-
HRMS (ϩve mode, in CH3OH) m/z: 845.3672 [(M ϩ H)ϩ,
C55H49N4O5 requires 845.3702]. Anal. found (calc.) for C55H48-
N4O5ؒ1.5H2O: C, 75.92 (75.75); H, 5.91 (5.90); N, 6.26 (6.43%).
Acknowledgements
The work described in this paper was partially supported by a
grant from the Research Grants Council of the Hong Kong
Special Administrative Region, China (HKBU 2023/00P) and a
grant from the Hong Kong Baptist University (FRG/99-00/
II-92, FRG/01-02/I-16).
Preparation of lanthanide complexes
Compounds 1–3 were prepared with the same procedure. A
typical procedure is given for 1.
[YbIII(o-DEM-C4-O-TPP)(H2O)] 1. A solution of n-BuLi
(1.6 M, 3.0 cm3, 4.8 mmol) in hexane was added dropwise over
a period of 10 min to a solution of (Me3Si)2NH (0.78 g,
4.8 mmol) in THF (15 cm3), the reaction mixture was allowed to
stirred at room temperature for 2 h, then transferred slowly to
a suspension of anhydrous YbCl3 (0.44 g, 1.6 mmol) in THF
(10 cm3). After stirring at room temperature for 24 h, the mix-
ture was concentrated to ca. 5 cm3 and filtered. The filtrate
was added to a solution of o-DEM(H)-C4-O-TPPH2 (0.25 g,
0.30 mmol) in bis(2-methoxyethyl) ether (5 cm3). The resultant
solution was refluxed for 24 h. Upon cooling to room temper-
ature, chloroform (50 cm3) was added to the solution and fil-
tered. The filtrate was washed with water (5 × 30 cm3), dried
over anhydrous Na2SO4 and filtered. The organic layer was
evaporated to dryness in vacuo and the residue was redissolved
in chloroform and chromatographed on silica gel using chloro-
form/methanol (v/v, 5 : 1) as eluent. The second band gave the
References
1 W. D. Horrocks, Jr. and M. Albin, Progress in Inorganic Chemistry,
ed. S. J. Lippard, John Wiley & Sons, 1984, vol. 31, p. 1104.
2 Bioanalytical Applications of Labelling Technologies, ed. I. Hemmilä,
T. Stählberg and P. Mottram, Wallac Oy, Turku, Finland, 1994.
3 (a) R. Reinfeld and C. H. Jørgensen, Lasers and Excited States of
Rare Earths, Springer-Verlag, Berlin, 1977; (b) K. A. Gschneider, Jr.
and L. Eyring, Handbook on the Physics and Chemistry of Rare
Earths, North-Holland, Amsterdam, 1979, vol. 15.
4 N. Sabbatini, M. Guardigli and J.-M. Lehn, Coord. Chem. Rev.,
1993, 123, 201.
5 A. Beeby, R. S. Dickins, S. FitzGerald, L. J. Govenlock, C. L.
Maupin, D. Parker, J. P. Riehl, G. Silligardi and J. A. G. Williams,
Chem. Commun., 2000, 1183.
6 M. Elbanowski and B. Makowska, J. Photochem. Photobiol. A,
1996, 99, 85.
7 F. J. Steemers, W. Verboom, D. N. Reinhoudt, E. B. Van der Tol and
J. W. Verhoeven, J. Am. Chem. Soc., 1995, 117, 9408.
8 (a) D. Parker, Coord. Chem. Rev., 2000, 205, 109; (b) M. P. Lowe and
D. Parker, Inorg. Chim. Acta, 2001, 317, 163; (c) M. P. Lowe,
D. Parker, O. Reany, S. Aime, M. Botta, G. Castellano, E. Gianolio
and R. Pagliarin, J. Am. Chem. Soc., 2001, 123, 7601; (d ) D. Parker,
R. S. Dickins, H. Puschmann, C. Crossland and J. A. K. Howard,
Chem. Rev., 2002, 102, 1977.
9 (a) C. Edder, C. Piguet, J.-C. G. Bünzli and G. Hopfgartner, J. Chem.
Soc., Dalton Trans., 1997, 4657; (b) M. Elhabiri, R. Scopelliti,
J.-C. G. Bünzli and C. Piguet, J. Am. Chem. Soc., 1999, 121, 10747;
(c) G. Zucchi, A.-C. Ferrand, R. Scopelliti and J.-C. G. Bünzli,
Inorg. Chem., 2002, 41, 2459; (d ) J.-C. G. Bünzli and C. Piguet,
Chem. Rev., 2002, 102, 1897.
10 X.-P. Yang, C.-Y. Su, B.-S. Kang, X.-L. Feng, W.-L. Xiao and
H.-Q. Liu, J. Chem. Soc., Dalton Trans., 2000, 3253.
11 M. Xiao and P. R. Selvin, J. Am. Chem. Soc., 2001, 123, 7067.
12 S. I. Klink, L. Grave, D. N. Reinhoudt, F. C. J. M. van Veggel,
M. H. V. Werts, G. A. J. Geurts and J. W. Hofstraat, J. Phys. Chem.
A, 2000, 104, 5457.
13 V. Vicinelli, P. Ceroni, M. Maestri, V. Balzani, M. Gorka and
F. Vögtle, J. Am. Chem. Soc., 2002, 124, 6461.
14 A. Beeby, R. S. Dickins, S. Faulkner, D. Parker and J. A. G.
Williams, Chem. Commun., 1997, 1401.
15 W. D. Horrocks, Jr., J. P. Bolender, W. D. Smith and R. M.
Supkowski, J. Am. Chem. Soc., 1997, 119, 5972.
16 M. I. Gaiduk, V. V. Grigoryants, A. F. Mironov, V. D. Rumyantseva,
V. I. Chissov and G. M. Sukhin, J. Photochem. Photobiol. B, 1990, 7,
15.
desired complex 1. Yield: 0.29 g, 95%. M.p. > 300 ЊC. IR (cmϪ1
,
in KBr): 3446m, 2955m,2918m, 2867m, 1739m, 1698m, 1615m,
1594s, 1439s, 1263s, 1196s, 1113m, 1072m, 989s, 798vs, 756s,
710s, 658m. UV-VIS in CHCl3, 20 ЊC, λmax/nm [log(ε/dm3 molϪ1
cmϪ1) in parentheses]: 422 (5.88), 552 (4.55), 589 (3.96). Fluor-
escence data in CHCl3, 20 ЊC, λexc/nm: 422; λem/nm: 650, 715,
980; Φem = 0.15 × 10Ϫ3; τ = 5.1 ns (650 nm), 2.43 µs (980 nm).
FAB-MS (ϩve mode) m/z: 1016 (M Ϫ H2O ϩ H)ϩ for 174Yb.
ESI-HRMS (ϩve mode, in CH3OH) m/z: 1016.2826 ([M Ϫ H2O
ϩ H]ϩ, C55H46N4O5Yb requires 1016.2867), 988.2494 ([M Ϫ
H2O Ϫ C2H4 ϩ H]ϩ, C53H42N4O5Yb requires 988.2553). Anal.
found (calc.) for C55H47N4O6Yb: C, 63.94 (63.95); H, 4.47
(4.59); N, 5.63 (5.42%).
[ErIII(o-DEM-C4-O-TPP)(H2O)] 2. Anhydrous ErCl3 (0.44 g,
1,6 mmol) was used. Yield: 0.30 g, 92%. M.p. > 300 ЊC. IR
(cmϪ1, in KBr): 3441m, 2975m, 2924m, 2851m, 1698m, 1620m,
1600m, 1574m, 1445m, 1331m, 1264s, 1103s, 1015s, 798vs,
700m. UV-VIS in CHCl3, 20 ЊC, λmax/nm [log(ε/dm3 molϪ1
cmϪ1) in parentheses]: 422 (5.71), 551 (4.31), 589 (3.58). Fluor-
escence data in CHCl3, 20 ЊC, λexc/nm: 422; λem/nm: 650, 715,
1544; Φem = 0.98 × 10Ϫ4; τ = 3.3 ns (650 nm). FAB-MS
(ϩve mode) m/z: 1008 (M Ϫ H2O ϩ H)ϩ for 166Er. ESI-HRMS
(ϩve mode, in CH3OH) m/z: 1010.2809 ([M Ϫ H2O ϩ H]ϩ,
17 (a) M. H. V. Werts, J. W. Hofstraat, F. A. J. Geurts and J. W.
Verhoeven, Chem. Phys. Lett., 1997, 276, 196; (b) M. H. V. Werts,
D a l t o n T r a n s . , 2 0 0 3 , 9 8 0 – 9 8 6
985