10.1002/anie.201814570
Angewandte Chemie International Edition
140
[6] a) P. Ruiz-Castillo, S. L. Buchwald, Chem. Rev. 2016, 116, 12564; b)
A. F. Littke, G. C. Fu, Angew. Chem. Int. Ed. 2002, 41, 4176; Angew.
Chem. 2002, 114, 4350.
120
a
b
[7] a) W. D. Watson, J. Org. Chem. 1985, 50, 2145; b) V. Stimson, Aust. J.
Chem. 1965, 18, 126.
100
80
60
40
20
0
c
d
[8] a) G. K. S. Prakash, T. Mathew, D. Hoole, P. M. Esteves, Q. Wang, G.
Rasul, G. A. Olah, J. Am. Chem. Soc. 2004, 126, 15770; b) R. B.
Bedford, M. F. Haddow, C. J. Mitchell, R. L. Webster, Angew. Chem.
Int. Ed. 2011, 50, 5524; Angew. Chem. 2011, 123, 5638; c) R. C.
Samanta, H. Yamamoto, Chem. Eur. J. 2015, 21, 11976; d) X. Xiong,
Y.-Y. Yeung, Angew. Chem. Int. Ed. 2016, 55, 16101; Angew. Chem.
2016, 128, 16335; e) D. R. Motati, D. Uredi, E. B. Watkins, Chem. Sci.
2018, 9, 1782; f) R. A. Rodriguez, C. M. Pan, Y. Yabe, Y. Kawamata,
M. D. Eastgate, P. S. Baran, J. Am. Chem. Soc. 2014, 136, 6908.
[9] a) S. C. Fosu, C. M. Hambira, A. D. Chen, J. R. Fuchs, D. A. Nagib,
Chem 2018, DOI: 10.1016/j.chempr.2018.11.007; b) L. Gu, T. Lu, M.
Zhang, L. Tou, Y. Zhang, Adv. Synth. Catal. 2013, 355, 1077; c) K.
Ohkubo, A. Fujimoto, S. Fukuzumi, Chem. Asian J. 2016, 11, 996; d)
X. Wan, Z. Ma, B. Li, K. Zhang, S. Cao, S. Zhang, Z.-J. Shi, J. Am.
i
-20
-0.2 0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
E vs (Ag/AgNO3)/V
Figure 1. Cyclic voltammetry experiment. Recorded on a Pt disc
electrode at 100 mVs-1 in (a) 0.1 M n-Bu4NOH in DCE; (b) 3 mM
n-Bu4NCl and 0.1 M n-Bu4NBF4 in DCE; (c) 3 mM 1a and 0.1 M n-
Bu4NBF4 in DCE; (d) 3 mM 1a and 0.1 M n-Bu4NBF4 and 0.05 M
n-Bu4NOH in DCE.
Chem. Soc. 2006, 128, 7416.
[10] a) For some recent reviews, see: a) M. Yan, Y. Kawamata, P. S. Baran,
Chem. Rev. 2017, 117, 13230; b) K. D. Moeller, Chem. Rev. 2018, 118,
4817; c) Y. Jiang, K. Xu, C. Zeng, Chem. Rev. 2018, 118, 4485; d) S.
Tang, Y. Liu, A. Lei, Chem 2018, 4, 27; e) J.-I. Yoshida, A. Shimizu, R.
Hayashi, Chem. Rev. 2018, 118, 4702; For some recent examples, see:
f) A. Badalyan, S. S. Stahl, Nature 2016, 535, 406; g) N. Fu, G. S.
Sauer, A. Saha, A. Loo, S. Lin, Science 2017, 357, 575; h) E. J. Horn, B.
R. Rosen, Y. Chen, J. Tang, K. Chen, M. D. Eastgate, P. S. Baran,
Nature 2016, 533, 77; i) X. Huang, Q. Zhang, J. Lin, K. Harms, E.
Meggers, Nat. Catal. 2018, DOI:10.1038/S41929-018-0198-y; j) L.
Schulz, M. Enders, B. Elsler, D. Schollmeyer, K. M. Dyballa, R. Franke,
S. R. Waldvogel, Angew. Chem. Int. Ed. 2017, 56, 4877; Angew. Chem.
2017, 129, 4955; k) N. Sauermann, T. H. Meter, C. Tian, L. Ackermann,
J. Am. Chem. Soc. 2017, 139, 18452; l) T. Morofuji, A. Shimizu, J.-I.
Yoshida, J. Am. Chem. Soc. 2013, 135, 5000; m) Q.-L. Yang, Y.-Q. Li,
C. Ma, P. Fang, X.-J. Zhang, T.-S. Mei, J. Am. Chem. Soc. 2017, 139,
3293; n) X. Gao, P. Wang, L. Zeng, S. Tang, A. Lei, J. Am. Chem. Soc.
2018, 140, 4195; o) N. Fu, G. S. Sauer, S. Lin, J. Am. Chem. Soc. 2017,
139, 15548; p) J. Li, W. Huang, J. Chen, L. He, X. Chang, G. Li, Angew.
Chem. Int. Ed. 2018, 57, 5695; Angew. Chem. 2018, 130, 5797; q) L.
Sun, X. Zhang, Z. Li, J. Ma, Z. Zeng, H. Jiang, Eur. J. Org. Chem. 2018,
4949; r) C.-Y. Cai, H.-C. Xu, Nat. Commun. 2018, 9, 3511; s) P. Xiong,
H.-H. Xu, H.-C. Xu, J. Am. Chem. Soc. 2017, 139, 2956; t) F. Kakiuchi,
T. Kochi, H. Mutsutani, N. Kobayashi, S. Urano, M. Sato, S. Nishiyama,
T. Tanabe, J. Am. Chem. Soc. 2009, 131, 11310; u) M. Konishi, K.
Tsuchida, K. Sano, T. Kochi, F. Kakiuchi, J. Org. Chem. 2017, 82,
8716; v) B. V. Lyalin, V. A. Petrosyan, Chem. Heterocycl. Compd.
2014, 49, 1599.
In conclusion, we have developed an ideal bifunctional
electrocatalysis strategy for catalytic dehydrochlorination of DCE
simultaneously with the aromatic chlorination using the released
HCl. The common solvent DCE is ideally employed as a reactant
producing vinyl chloride and as a chlorinating reagent for efficient
aromatic chlorination. Notably, this external oxidant free
electrocatalysis can also be easily scaled up and is demonstrated
very green and sustainable with the tolerance of inactive chemicals.
Considering the benign process for DCE dehydrochlorination, and
the broad substrate scope of aromatic chlorination, this method
would open new avenue for vinyl chloride and (hetero)aryl chlorides
preparation in an efficient and environmentally benign manner. The
present bifunctional electrocatalysis strategy is expected to be of
high interest to scientists from both academia and industry.
Acknowledgements
Financial support from the National Basic Research Program of
China (973 Program) (No. 2015CB856600), and the National
Natural Science Foundation of China (21632001, 21772002,
81821004) are greatly appreciated. We thank Prof. Chengchu Zeng
and Yangye Jiang at Beijing University of Technology for helpful
discussion on the cyclic voltammetry experiment, and thank Prof.
Wei Li and Wei Qin at Nankai University for assistance with the
analysis of the composition of gas mixture. We also thank Weijin
Wang in this group for reproducing the results of 3a and 4i.
[11] S. Song, X. Sun, X. Li, Y. Yuan, N. Jiao, Org. Lett. 2015, 17, 2886.
[12] W. Zhao, M. Sun, H. Zhang, Y. Dong, X. Li, W. Li, J. Zhang, RSC Adv.
2015, 5, 104071.
[13] a) J. P. Johnson, L. G. Christophorou, J. G. Carter, J. Chem. Phys. 1977,
67, 2196; b) D. L. McCorkle, I. Szamrej, L. G. Christophorou, J. Chem.
Phys. 1982, 77, 5542.
[14] a) W. K. Walter, R. B. Jones, Catal. Lett. 1994, 24, 333; b) R. B. Jones,
S. Turton, R. Ithnin, Surf. Sci. 1997, 377-379, 705.
[15] M. Scharfe, P. A. Lira-Parada, V. Paunoviꢀ, M. Moser, A. P. Amrute, J.
Pꢁrez-Ramírez, Angew. Chem. Int. Ed. 2016, 55, 3068; Angew. Chem.
2016, 128, 3120.
[16] X. Chen, X.-S. Hao, C. E. Goodhue, J.-Q. Yu, J. Am. Chem. Soc.
2006, 128, 6790.
Received: (will be filled in by the editorial staff)
Published online on (will be filled in by the editorial staff)
Keywords: electrochemistry, chlorination, radicals,
dehydrochlorination, C-H functionalization
[17] T. Gieshoff, A. Kehl, D. Schollmeyer, K. D. Moeller, S. R. Waldvogel,
J. Am. Chem. Soc. 2017, 139, 12317.
[1] a) I. Mochida, T. Tsunawaki, C. Sotowa, Y. Korai, K. Higuchi, Ind.
Eng. Chem. Res. 1996, 35, 3803; b) C. Li, G. Hu, W. Zhong, W. He,
W. Du, F. Qian, Ind. Eng. Chem. Res. 2013, 52, 17501.
[2] R. Lin, A. P. Amrute, J. Pérez-Ramírez, Chem. Rev. 2017, 117, 4182.
[3] G. W. Gribble, J. Chem. Educ. 2004, 81, 1441.
[18] a) E. M. Ungureanu, A. C. Razus, L. Birzan, G. Buica, M. Cretu, E.
Cristian, Electrochimica Acta 2006, 52, 794; b) D. Stevanović, I.
Damljanović, M. Vukićević, N. Manojlović, N. S. Radulović, R. D.
Vukićević, Helv. Chim. Acta 2011, 94, 1406; c) B. V. Lyalin, V. A.
Petrosyan, Russ. J. Electrochem. 2013, 49, 497.
[4] G. Qian, X. Hong, B. Liu, H. Mao, B. Xu, Org. Lett. 2014, 16, 5294.
[5] a) J. Latham, E. Brandenburger, S. A. Shepherd, B. R. K. Menon, J.
Micklefield, Chem. Rev. 2018, 118, 232; b) Z. Xu, Z. Yang, Y. Liu, Y.
Lu, K. Chen, W. Zhu, J. Chem. Inf. Model. 2014, 54, 69.
4
This article is protected by copyright. All rights reserved.