ORGANIC
LETTERS
2006
Vol. 8, No. 5
999-1001
A Highly Enantioselective Lewis Basic
Organocatalyst for Reduction of N-Aryl
Imines with Unprecedented Substrate
Spectrum
Zhouyu Wang,†,‡ Xiaoxia Ye,†,§ Siyu Wei,† Pengcheng Wu,† Anjiang Zhang,†,§ and
Jian Sun*,†
Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of
Sciences, Chengdu, 610041, China, Department of Chemistry, Xihua UniVersity,
Chengdu, 610039, China, Department of Chemistry, Wenzhou UniVersity, Wenzhou,
325035, China, and Graduate School of Chinese Academy of Sciences, China
Received January 15, 2006
ABSTRACT
L-Pipecolinic acid derived formamides have been developed as highly efficient and enantioselective Lewis basic organocatalysts for the reduction
of N-aryl imines with trichlorosilane. Catalyst 4b afforded high isolated yields (up to 98%) and enantioselectivities (up to 96%) under mild
conditions with an unprecedented substrate spectrum.
Catalytic enantioselective reduction of imines represents one
of the most important methods for preparing chiral amines,1
a ubiquitous structural motif of natural products, drugs, and
agrochemicals. Since the 1970s, considerable effort has been
devoted to the development of this transformation, and
remarkable progress has been made.1,3 However, compared
with the reduction of alkenes and ketones, relatively limited
numbers of highly enantioselective procedures are currently
available for the reduction of imines, and the development
of efficient catalysts with high enantioselectivity has proven
to be much more difficult. In particular, the highly enantio-
selective catalyst with a satisfactorily broad substrate scope
remains elusive. Factors contributing to the difficulty of this
transformation include the difference in reactivity among
imines containing different nitrogen substituents, the exist-
ence of acyclic imines as inseparable mixtures of E/Z
† Chengdu Institute of Biology.
(3) For examples, see: (a) Moessner, C.; Bolm, C. Angew. Chem., Int.
Ed. 2005, 44, 7564. (b) Nolin, K. A.; Ahn, R. W.; Toste, F. D. J. Am.
Chem. Soc. 2005, 127, 12462. (c) Trifonova, A.; Diesen, J. S.; Chapman,
C. J.; Andersson, P. G. Org. Lett. 2004, 6, 3825. (d) Lipshutz, B. H.;
Shimizu, H. Angew. Chem., Int. Ed. 2004, 43, 2228. (e) Kadyrov, R.;
Riermeier, T. H. Angew. Chem., Int. Ed. 2003, 42, 5472. (f) Chi, Y.; Zhou,
Y.; Zhang, X. J. Org. Chem. 2003, 68, 4120. (g) Xiao, D.; Zhang, X. Angew.
Chem., Int. Ed. 2001, 40, 3425. (h) Hansen, M. C.; Buchwald, S. L. Org.
Lett. 2000, 2, 713. (i) Nishibayshi, Y.; Takei, I.; Uemura, S.; Hidai, M.
Organometallics 1998, 17, 3420. (j) Verdaguer, X.; Lange, U.; Buchwald,
S. L. Angew. Chem., Int. Ed. 1998, 37, 1103. (k) Schnider, P.; Koch, G.;
Pretot, R.; Wang, G.; Bohnen, F. M.; Kru¨ger, C.; Pfaltz, A. Chem.-Eur. J.
1997, 3, 887. (l) Verdaguer, X.; Lange, U. E. W.; Reding, M. T.; Buchwald,
S. L. J. Am. Chem. Soc. 1996, 118, 6784. (m) Uematsu, N.; Fujii, A.;
Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1996, 118, 4916.
‡ Xihua University.
§ Wenzhou University.
(1) (a) Blaser, H.-U.; Spindler, F. In ComprehensiVe Asymmetric
Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: Berlin,
1999; Vol. 1, p 247. (b) Ohkuma, T.; Noyori, R. In ComprehensiVe
Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.;
Springer: New York, 2004; Suppl. 1, p 43.
(2) For recent reviews, see: (a) Taratov, V. I.; Bo¨rner, A. Synlett 2005,
203. (b) Riant, O.; Mostefai, N.; Courmarcel, J. Synthesis 2004, 2943. (c)
Tang, W.; Zhang, X. Chem. ReV. 2003, 103, 3029. (d) Blaser, H.-U.; Malan,
C.; Pugin, B.; Spindler, F.; Steiner, H.; Studer, M. AdV. Synth. Catal. 2003,
345, 103. (e) Carpentier, J. F.; Bette, V. Curr. Org. Chem. 2002, 6, 913.
(f) Palmer, M. J.; Wills, M. Tetrahedron: Asymmetry 1999, 10, 2045. (g)
Kobayshi, S.; Ishitani, H. Chem. ReV. 1999, 99, 1069.
10.1021/ol060112g CCC: $33.50
© 2006 American Chemical Society
Published on Web 02/10/2006