Organic Letters
Letter
(9) Molecular oxygen in photoredox catalysis: (a) Higgins, R. F.; Fatur,
S. M.; Shepard, S. G.; Stevenson, S. M.; Boston, D. J.; Ferreira, E. M.;
Damrauer, N. H.; Rappe, A. K.; Shores, M. P. J. Am. Chem. Soc. 2016,
́
time compared to previous methods; and (3) the photochemical
synthesis of carbazoles was demonstrated in scale-up via a
numbering-up strategy. The Fe(phen)3(NTf2)2/O2 system
could also promote photocyclization for the synthesis of
carbazoles in yields higher than those of the first-generation
copper-based catalyst system. Further fundamental work is
currently directed toward a better understanding of the
mechanism via Fe complexes and application in other photo-
chemical syntheses.
138, 5451−5464. (b) Douglas, J. J.; Cole, K. P.; Stephenson, C. R. J. J.
Org. Chem. 2014, 79, 11631−11643. (c) Nicholls, T. P.; Constable, G.
E.; Robertson, J. C.; Gardiner, M. G.; Bissember, A. C. ACS Catal. 2016,
6, 451−457.
(10) Caron, S.; Dugger, R. W.; Ruggeri, S. G.; Ragan, J. A.; Ripin, D. H.
B. Chem. Rev. 2006, 106, 2943−2989.
(11) (a) O’Brien, M.; Baxendale, I. R.; Ley, S. V. Org. Lett. 2010, 12,
1596−1598. (b) Polyzos, A.; O’Brien, M.; Petersen, T. P.; Baxendale, I.
R.; Ley, S. V. Angew. Chem., Int. Ed. 2011, 50, 1190−1198. (c) O’Brien,
M.; Taylor, N.; Polyzos, A.; Baxendale, I. R.; Ley, S. V. Chem. Sci. 2011, 2,
1250−1257.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
(12) Battino, R.; Rettich, T. R.; Tominaga, T. J. Phys. Chem. Ref. Data
1983, 12, 163−178.
(13) (a) Hari, D. P.; Koenig, B. Chem. Commun. 2014, 50, 6688−6699.
(b) Neumann, M.; Zeitler, K. Org. Lett. 2012, 14, 2658−2661.
(15) (a) Braterman, P. S.; Song, J.-I.; Peacock, R. D. Inorg. Chem. 1992,
31, 555−559. (b) Bouzaid, J.; Schultz, M.; Lao, Z.; Bartley, J.; Bostrom,
T.; McMurtrie, J. Cryst. Growth Des. 2012, 12, 3906−3916. (c) Palmer,
R. A.; Piper, T. S. Inorg. Chem. 1966, 5, 864−878. (d) Van Meter, F. M.;
Neumann, H. M. J. Am. Chem. Soc. 1976, 98, 1382−1388.
(16) Creutz, C.; Chou, M.; Netzel, T. L.; Okumura, M.; Sutin, N. J. Am.
Chem. Soc. 1980, 102, 1309−1319.
Experimental procedures and characterization data for all
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
(17) Fe-based photocatalysts: (a) Gualandi, A.; Marchini, M.;
Mengozzi, L.; Natali, M.; Lucarini, M.; Ceroni, P.; Cozzi, P. G. ACS
ACKNOWLEDGMENTS
■
Catal. 2015, 5, 5927−5931. (b) Muhldorf, B.; Wolf, R. Angew. Chem.,
̈
The authors acknowledge the Natural Sciences and Engineering
Research Council of Canada (NSERC), the NSERC CREATE
program in Continuous Flow Science, the Canadian Foundation
for Innovation for financial support for continuous flow
infrastructure and the Centre for Green Chemistry and Catalysis
(CGCC) for funding. The authors thank Prof. James McCusker
(Michigan State University) for helpful suggestions.
Int. Ed. 2016, 55, 427−430.
(18) (a) Chang, H.-R.; McCusker, J. K.; Toftlund, H.; Wilson, R. S.;
Trautwein, A. X.; Winkler, H.; Hendrickson, D. N. J. Am. Chem. Soc.
1990, 112, 6814−6827. (b) McCusker, J. K.; Walda, K. N.; Dunn, R. C.;
Simon, J. D.; Magde, D.; Hendrickson, D. N. J. Am. Chem. Soc. 1993,
115, 298−307.
(19) E° = +0.57 V for O2− → O2: Rao, P. S.; Hayon, E. J. Phys. Chem.
1975, 79, 397−402.
(20) Solubility of O2 in THF at 25 °C = 322 mg/L. See: Solubility Data
Series: Oxygen and Ozone; Battino, R., Ed; Pergamon Press: Oxford, UK,
1981; Vol. 7.
REFERENCES
■
(1) For some recent examples of photochemical synthetic methods
highlighted as green, see: (a) Amara, Z.; Bellamy, J. F. B.; Horvath, R.;
Miller, S. J.; Beeby, A.; Burgard, A.; Rossen, K.; Poliakoff, M.; George, M.
S. Nat. Chem. 2015, 7, 489−495. (b) Wu, C.-J.; Zhong, J.-J.; Meng, Q.-
Y.; Lei, T.; Gao, X.-W.; Tung, C.-H.; Wu, L.-Z. Org. Lett. 2015, 17, 884−
887. (c) Kalaitzakis, D.; Triantafyllakis, M.; Alexopoulou, I.; Sofiadis, M.;
Vassilikogiannakis, G. Angew. Chem., Int. Ed. 2014, 53, 13201−13205.
(d) Muro-Small, M. L.; Neckers, D. C. ACS Sustainable Chem. Eng. 2013,
1, 1214−1217.
(2) (a) Su, Y.; Straathof, N. J. W.; Hessel, V.; Noel, T. Chem. - Eur. J.
2014, 20, 10562−10589. (b) Gilmore, K.; Seeberger, P. H. Chem. Rec.
2014, 14, 410−418. (c) Garlets, Z. J.; Nguyen, J. D.; Stephenson, C. R. J.
Isr. J. Chem. 2014, 54, 351−360.
(21) (a) Nagaki, A.; Hirose, K.; Tonomura, O.; Taniguchi, S.; Taga, T.;
Hasebe, S.; Ishizuka, N.; Yoshida, J.-I. Org. Process Res. Dev. 2016, 20,
687−691. (b) Su, Y.; Kuijpers, K.; Hessel, V.; Noel, T. React. Chem. Eng.
̈
2016, 1, 73−81.
(22) Saturnino, C.; Palladino, C.; Napoli, M.; Sinicropi, M. S.; Botta,
A.; Sala, M.; Carcereri de Prati, A.; Novellino, E.; Suzuki, H. Eur. J. Med.
Chem. 2013, 60, 112−119.
(23) Dong, Y.; Lu, B.; Zhang, X.; Zhang, J.; Lai, L.; Wu, Y.; Song, Y.;
Luo, J.; Pang, X.; Yi, Z.; Liu, M. Carcinogenesis 2010, 31, 2097−2104.
(3) (a) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev.
2013, 113, 5322−5363. (b) Beatty, J. W.; Stephenson, C. R. J. Acc. Chem.
Res. 2015, 48, 1474−1484. (c) Reckenthaeler, M.; Griesbeck, A. G. Adv.
Synth. Catal. 2013, 355, 2727−2744.
(4) Zhang, M.; Chen, C.-C.; Ma, W.-H.; Zhao, J. C. Angew. Chem., Int.
Ed. 2008, 47, 9730−9733.
(5) (a) Su, F.; Mathew, S. C.; Lipner, G.; Fu, X.; Antonietti, M.;
Blechert, S.; Wang, X. J. Am. Chem. Soc. 2010, 132, 16299−16301.
(b) Su, F.; Mathew, S. C.; Mohlmann, L.; Antonietti, M.; Wang, X.;
̈
Blechert, S. Angew. Chem., Int. Ed. 2011, 50, 657−660.
(6) (a) Fukuzumi, S.; Ohkubo, K. Org. Biomol. Chem. 2014, 12, 6059−
6071. (b) Nicewicz, D. A.; Nguyen, T. M. ACS Catal. 2014, 4, 355−360.
2483. (c) Bagal, D. B.; Kachkovskyi, G.; Knorn, M.; Rawner, T.;
Bhanage, B. M.; Reiser, O. Angew. Chem., Int. Ed. 2015, 54, 6999−7002.
(8) Hernandez-Perez, A. C.; Collins, S. K. Angew. Chem., Int. Ed. 2013,
52, 12696−12700.
D
Org. Lett. XXXX, XXX, XXX−XXX