RSC Advances
Page 4 of 4
DOI: 10.1039/C5RA24634B
Kumar, M. S. Bodas, Org. Lett. 2000, 2, 3821; (c) J. Jung, J. Min, O.ꢀ
S. Park, Synth. Commun. 2001, 31, 1837; (d) G. Athanasellis, G.
Melagraki, A. Afantitis, K. Makridima, O. IgglessiꢀMarkopoulou,
Arkivoc 2006, 10, 28.
(a) C.ꢀF. Lin, W.ꢀD. Lu, I. W. Wang, M.ꢀJ. Wu, Synlett 2003, 13,
2057; (b) B. Liang, M. Huang, Z. You, Z. Xiong, K. Lu, R. Fathi, J.
Chen, Z. Yang, J. Org. Chem. 2005, 70, 6097; (c) E. Awuah, A.
Capretta, Org. Lett. 2009, 11, 3210; (d) Q. Yang, H. Alper, J. Org.
Chem. 2010, 75, 948; (e) M. Yoshida, Y. Fujino, T. Doi, Org. Lett.
2011, 13, 4526; (f) X. Wang, G. Cheng, X. Cui, Chem. Commun.
2014, 50, 652.
In summary, we have developed a PhNMe3Iꢀcatalyzed radical
cascade to chromone scaffolds (particularly the useful 3ꢀ
carboxylated chromones that cannot be synthesized conveniently
with other reported strategies) via a single operation, which
serves as the first example on intermolecular addition of aryloxyl
radical to C≡C bond. The organocatalyzed reaction proceeds
smoothly with readily available salicylaldehydes and activated
internal alkynes, and can tolerate a range of catalytically reactive
functional groups, thus may provide concise approaches to
70
75
9
5
10 M. Shimizu, H. Tsurugi, T. Satoh, M. Miura, Chem. Asian J. 2008, 3,
881.
11 M.ꢀA. Légaré, M.ꢀA. Courtemanche, É. Rochette, F.ꢀG. Fontaine,
Science 2015, 349, 513.
12 (a) S. Vedachalam, J. Zeng, B. K. Gorityala, M. Antonio, X.ꢀW. Liu,
Org. Lett. 2010, 12, 352; (b) S. Vedachalam, Q.ꢀL. Wong, B. Maji, J.
Zeng, X.ꢀW. Liu, Adv. Synth. Catal. 2011, 353, 219; (c) L. Wen, H.
Zhang, H. Lin, Q. Shen, L. Lu, J. Fluorine Chem. 2012, 133, 171.
13 (a) P. J. Parsons, C. S. Penkett, A. Shell, J. Chem. Rev. 1996, 96, 195;
(b) U. Wille, Chem. Rev. 2013, 113, 813.
10 biologically important chromone skeletons in drug discoveries.
Studies to clearly understand the mechanism and explore the
potential applications of aryloxyl radicals are underway in our lab.
Financial support from The National Natural Science Foundation of
China (21402128), Beijing Natural Science Foundation (2144045),
80
15 Beijing
Municipal
Education
Commission
Foundation
85
(KM201410028007), Scientific Research Base Development Program of
the Beijing Municipal Commission of Education, and Capital Normal
University are gratefully acknowledged.
14 (a) J. Gong, P. L. Fuchs, J. Am. Chem. Soc. 1996, 118, 4486; (b) J. S.
Xiang, P. L. Fuchs, Tetrahedron Lett. 1996, 37, 5269; (c) J. S. Xiang,
W. Jiang, P. L. Fuchs, Tetrahedron Lett. 1997, 119, 4123; (d) R. A.
Doohan, N. W. A. Geraghty, Green Chem. 2005, 7, 91; (e) Z.ꢀQ. Liu,
L. Sun, J.ꢀG. Wang, J. Han, Y.ꢀK. Zhao, B. Zhou, Org. Lett. 2009, 11,
1437; (f) J.ꢀY. Luo, H.ꢀL. Hua, Z.ꢀS. Chen, Z.ꢀZ. Zhou, Y.ꢀF. Yang,
P.ꢀX. Zhou, Y.ꢀT. He, X.ꢀY. Liu, Y.ꢀM. Liang, Chem. Commun. 2014,
50, 1564; (g) J. Li, J. Zhang, H. Tan, D. Z. Wang, Org. Lett. 2015, 17,
2522; (h) S. Manna, A. P. Antonchick, Org. Lett. 2015, 17, 4300; (i)
H. Wang, S. Yu, Org. Lett. 2015, 17, 4272.
Notes and references
90
20 aDepartment of Chemistry, Capital Normal University, Beijing
bSchool of Chemical Engineering, Beijing Institute of Petrochemical
Technology, Beijing 102617, P. R. China
+These authors contributed equally to this work
95
25 †Electronic Supplementary Information (ESI) available: General
procedure for synthesis, characterization data, and 1H, 13C, and 19F NMR
spectra of compounds. See DOI: 10.1039/c000000x/
1
2
(a) G. P. Ellis, in Chromenes, Chromanones, and Chromones: The
Chemistry of Heterocyclic Compounds, Vol. 31; G. P. Ellis Ed.; John
Wiley & Sons, Inc., New York, 1977; b) A. Gaspar, M. J. Matos, J.
Garrido, E. Uriarte, F. Borges, Chem. Rev. 2014, 114, 4960, and
references cited therein.
For selected examples, see: (a) A. Gaspar, T. Silva, M. Yáñez, Vina,
D. F. Orallo, F. Ortuso, E. Uriarte, S. Alcaro, F. Borges, J. Med.
Chem. 2011, 54, 5165; (b) A. Gaspar, J. Reis, A. Fonseca, N.
Milhazes, D. Viña, E. Uriarte, F. Borges, Bioorg. Med. Chem. Lett.
2011, 21, 707; (c) A. Gaspar, F. Teixeira, E. Uriarte, N. Milhazes, A.
Melo, M. N. D. S. Cordeiro, F. Ortuso, S. Alcaro, F. Borges,
ChemMedChem 2011, 6, 628; (d) A. Gaspar, J. Reis, S. Kachler, S.
Paoletta, E. Uriarte, N. Klotz, K. S. Moro, F. Borges, Biochem.
Pharmacol. 2012, 84, 21; (e) L. J. Legoabe, A. Petzer, J. P. Petzer,
Bioorg. Med. Chem. Lett. 2012, 22, 5480.
15 (a) J. Zhou, G.ꢀL. Zhang, J.ꢀP. Zou, W. Zhang, Eur. J. Org. Chem.
2011, 3412; (b) B. Gabriele, R. Mancuso, E. Lupinacci, L. Veltri, G.
Salerno, C. Carfagna, J. Org. Chem. 2011, 76, 8277; (c) Y. Lin, G.
Lu, C. Cai, W. Yi, Org. Lett. 2015, 17, 3310.
100
105
110
30
35
40
45
50
55
60
65
16 For TEMPO and its analogues as radical initiators, see: B. König, W.
Pitsch, M. Klein, R. Vasold, M. Prall, P. R. Schreiner, J. Org. Chem.
2001, 66, 1742. For acyloxyl radical initiators, see: (a) U. Wille, J.
Am. Chem. Soc. 2002, 124, 14; (b) C. Jargstorff, U. Wille, Eur. J.
Org. Chem. 2003, 3173. For methoxyl radical initiator, see ref. 16(b).
17 4ꢀMethoxysalicyaldehyde 1n and phenylpropiolate were reacted under
the standard reaction conditions. After the solvent was removed under
vacuum directly from the reaction mixture without any other workupꢀ
procedures, the residue was treated with HBr (48% aqueous solution),
and 7ꢀhydroxyflavone 4 was then isolated in 42% yield with 63%
recovery of phenylpropiolic acid, thus confirming the distinguished
regioselectivity of this organocatalyzed reaction.
3
4
5
M. Cushman, D. Nagarathnam, D. L. Burg, R. L. Geahlen, J. Med.
Chem. 1991, 34, 798.
R. Walenta, R. MuellerꢀPeddinghaus, I. Ban, M. Wurl, U. Preuschoff,
Eur. Pat. Appl. 1988, EP290915.
115 18 Aryloxyl radicals with strong electronꢀwithdrawing groups are
difficult to be generated from the corresponding phenols, and are very
unstable even under inert atmosphere, see: E. R. Altwicker, Chem.
Rev. 1967, 67, 475. This is also the reason why only very activated
alkynes are suitable for this cyclization strategy.
For representative examples, see: (a) R. A. Appleton, J. R. Bantick, T.
R. Chamberlain, D. N. Hardern, T. B. Lee, A. D. Pratt, J. Med. Chem.
1977, 20, 371; (b) J. H. Looker, J. H. McMechan, J. W. Mader, J.
Org. Chem. 1978, 43, 2344; (c) C. A. Gray, P. T. Kaye, A. T.
Nchinda, J. Nat. Prod. 2003, 66, 144; (d) D. A. Vasselin, A. D.
Westwell, C. S. Matthews, T. D. Bradshaw, M. F. G. Stevens, J. Med.
Chem. 2006, 49, 3973; (e) S. J. Hosseinimehr, S. Emami, S. M.
Taghdisi, S. Akhlaghpoor, Eur. J. Med. Chem. 2008, 43, 557; (f) J.
Zhao, Y. F. Zhao, H. Fu, Org. Lett. 2012, 14, 2710; (g) J.ꢀP. Lin, Y.ꢀ
Q. Long, Chem. Commun. 2013, 49, 5313.
120 19 H. H. Rao, X. Ma, Q. Liu, Z. Li, S. Cao, C.ꢀJ. Li, Adv. Synth. Catal.
2013, 355, 2191.
20 (a) X. Li, X. Xu, C. Zhou, Chem. Commun. 2012, 48, 12240; (b) Z.
Liu, J. Zhang, S. Chen, E. Shi, Y. Xu, X. Wan, Angew. Chem. Int. Ed.
2012, 51, 3231; (c) W.ꢀP. Mai, H.ꢀH. Wang, Z.ꢀC. Li, J.ꢀW. Yuan, Y.ꢀ
125
M. Xiao, L.ꢀR. Yang, P. Mao, L.ꢀB. Qu, Chem. Commun. 2012, 48,
10117; (d) B. Tan, N. Toda, C. F. Barbas III, Angew. Chem. Int. Ed.
2012, 51, 12538; (e) X. Li, M. Fang, P. Hu, G. Hong, Y. Tang, X. Xu,
Adv. Synth. Catal. 2014, 356, 2103; (f) Y. Lv, Y. Li, T. Xiong, Y. Lu,
Q. Liu, Q. Zhang, Chem. Commun. 2014, 50, 2367.
6
7
For representative examples, see: (a) X. Huang, E. Tang, W. Xu, J.
Cao, J. Comb. Chem. 2005, 7, 802; (b) G. Shan, X. Yang, L. Ma, Y.
Rao, Angew. Chem. Int. Ed. 2012, 51, 13070; (c) C. A. Engelhart, C.
C. Aldrich, J. Org. Chem. 2013, 78, 7470.
For representative examples, see: (a) D. Obrecht, Helv. Chim. Acta
1989, 72, 447; (b) L. Costantino, G. Rastelli, M. C. Gamberini, J. A.
Vinson, P. Bose, A. Iannone, M. Staffieri, L. Antolini, A. Del Corso,
U. Mura, A. Albasini, J. Med. Chem. 1999, 42, 1881; (c) E. Fillion, A.
M. Dumas, B. A. Kuropatwa, N. R. Malhotra, T. C. Sitler, J. Org.
Chem. 2005, 71, 409.
130 21 For examples on the addition of Cꢀcentered radical to carbonyl
moieties to form Oꢀcentered radicals, see: (a) A. L. J. Beckwith, B. P.
Hay, J. Am. Chem. Soc. 1989, 111, 230; (b) A. L. J. Beckwith, B. P.
Hay, J. Am. Chem. Soc. 1989, 111, 2674.
22 (a) For efficient intermolecular crossꢀcoupling of radicals, see ref.
135
20b; (b) For efficient intramolecular crossꢀcoupling of radicals, see:
J.ꢀK. Qiu, B. Jiang, Y.ꢀL. Zhu, W.ꢀJ. Hao, D.ꢀC. Wang, J. Sun, P.
Wei, S.ꢀJ. Tu, G. Li, J. Am. Chem. Soc. 2015, 137, 8928.
8
(a) F. Pochat, P. L′Haridon, Synth. Commun. 1998, 28, 957; (b) P.
4
|
Journal Name, [year], [vol], 00–00
This journal is © The Royal Society of Chemistry [year]