E. J. Enholm, A. Bhardawaj / Tetrahedron Letters 44 (2003) 3763–3765
3765
3. (a) Mero, C. L.; Porter, N. A. J. Am. Chem. Soc. 1999,
121, 5155–5160; (b) Feng, H.; Kavrakova, I. K.; Pratt, D.
A.; Tellinghuisen, J.; Porter, N. A. J. Org. Chem. 2002, 67,
6050–6054.
4. See for example: (a) Enholm, E. J.; Cottone, J. S.; Allais,
F. Org. Lett. 2001, 3, 145–147; (b) Enholm, E. J.; Gal-
lagher, M. E.; Jiang, S.; Batson, W. A. Org. Lett. 2000, 2,
3355–3357.
5. (a) Guindon, Y.; Yoakim, C.; Lemieux, R.; Boisvert, L.;
Delorme, D.; Lavallee, J.-F. Tetrahedron Lett. 1990, 31,
2845; (b) Guindon, Y.; Lavallee, J.-F.; Llinas-Brunet, M.;
Horner, G.; Rancourt, J. J. Am. Chem. Soc. 1991, 113,
9701; (c) Brunner, H.; Bluechel, C.; Doyle, M. P. J.
Organomet. Chem. 1997, 541, 89; (d) Guindon, Y.; Guerin,
B.; Chabot, C.; Ogilvie, W. J. Am. Chem. Soc. 1996, 118,
12528; (e) Guindon, Y.; Guerin, B.; Rancourt, J.; Chabot,
C.; Mackintosh, N.; Ogilvie, W. W. Pure Appl. Chem.
1996, 68, 89; (f) Guindon, Y.; Jung, G.; Guerin, B.;
Ogilvie, W. W. Synlett 1998, 213; (g) Sibi, M. P.; Ji, J. J.
Org. Chem. 1996, 61, 6090; (h) Sibi, M. P.; Ji, J. Angew.
Chem. 1996, 35, 190; (i) Sibi, M. P.; Ji, J. G. Angew. Chem.
1997, 36, 274; (j) Sibi, M. P.; Shay, J. J.; Ji, J. G.
Tetrahedron Lett. 1997, 38, 5955; (k) Yamamoto, Y.;
Onuki, S.; Yumoto, M.; Asao, N. J. Am. Chem. Soc. 1994,
116, 421; (l) Sibi, M. P.; Jasperse, C. P.; Ji, J. J. Am. Chem.
Soc. 1995, 117, 10779; (m) Wu, J. H.; Radinov, R.; Porter,
N. A. J. Am. Chem. Soc. 1995, 117, 11029; (n) Wu, J. H.;
Zhang, G.; Porter, N. A. Tetrahedron Lett. 1997, 38, 2067;
(o) A recent review: Renaud, P.; Gerster, M. Angew.
Chem. 1998, 38, 2661.
Figure 1. Transition state for 78.
With non-bonded conformational preferences becoming
important now. It should be noted that M probably has
several other unknown sites of lone-pair polydentate
interactions with both molecules. Molecular models
indicate that the two sugars easily sandwich the reac-
tion with one directly on top of the other. Because both
sugars must be involved in this bromine atom transfer,
the long distance from the controlling asymmetric cen-
ter in 10, may be just part of the picture in addition to
how the two xylose sugars have nonbonded interactions
and fit together.9
6. Clark, K. B.; Wayner, D. D. M. J. Am. Chem. Soc. 1991,
113, 9363–9365.
In conclusion, an asymmetric Kharasch-type atom
transfer reaction was studied to obtain the highest
levels of diastereoselection. The highest ratio of 12.5:1
(71%) was observed at low temperatures (−78°C) using
the Lewis acid Eu(OTf)3. Because the new asymmetric
7. For longer range acyclic diastereoselective radical reac-
tions, see: (a) Sibi, M. P.; Johnson, M. D.; Punniya-
murthy, T. Can. J. Chem. 2001, 79, 1546–1555; (b) Sibi,
M. P.; Manyem, S. Tetrahedron 2000, 56, 8033–8061; (c)
Sibi, M. P.; Ji, J.; Sausker, J. B.; Jasperse, C. P. J. Am.
Chem. Soc. 1999, 121, 7517–7526; (d) Sibi, M. P.; Porter,
N. A. Acc. Chem. Res. 1999, 32, 163–171; (e) Renaud, P.;
Gerster, M. Angew. Chem., Int. Ed. Engl. 1998, 37, 2562–
2579; (f) Porter, N. A.; Feng, H.; Kavrakova, I. K.
Tetrahedron Lett. 1999, 40, 6713–6716; (g) Wu, J. H.;
Radinov, R.; Porter, N. A. J. Am. Chem. Soc. 1995, 117,
11029–11030.
center is six atoms away from the
D-xylose, we pro-
posed a transition state involving two sugars. The
conversion of the major product to a naturally occur-
ring chiral S-g-butyrolactone, confirmed the absolute
stereochemistry of the Kharasch reaction.
Acknowledgements
8. (a) Yadav, J.; Manivan, P. P. Synth. Commun. 1993, 23,
2731–2741; (b) Ravid, U.; Silverstein, R. M.; Smith, L. R.
Tetrahedron 1978, 34, 1449–1452.
We gratefully acknowledge support by the National
Science Foundation (grant CHE-0111210) for this
work.
9. Selected spectral data. Bromoester 7: 1H NMR 7.30 (m,
5H), 6.00 (d, 1H, J=3.5), 4.71 (d, 1H, J=11.9), 4.60 (d,
1H, J=3.5), 4.45 (d, 1H, J=11.9), 4.43–4.34 (m, 3H), 3.81
(s, 2H), 3.69 (m, 1H), 1.45 (s, 3H), 1.31 (s, 3H); 13C NMR
l 167.3, 137.3, 128.8, 128.4, 128.1, 112.2, 105.5, 82.3, 81.7,
References
1
76.9, 72.1, 64.1, 41.0, 27.0, 26.5. Bromoester 8: H NMR
1. (a) Kharasch, M. S.; Jensen, E. V.; Urry, W. H. Science
1945, 102, 128–129; (b) Walling, C. Free Radicals in Solu-
tion; Wiley and Sons: New York, 1957; pp. 247–272.
2. (a) Curran, D. P. Synthesis 1988, 489; (b) Curran, D. P.;
Bosch, E.; Kaplan, J.; Newcomb, M. J. Org. Chem. 1989,
54, 1826; (c) Curran, D. P.; Seong, C. M. J. Am. Chem.
Soc. 1990, 112, 9401; (d) Curran, D. P.; Chen, M.; Splet-
zer, E.; Seong, C. M.; Chang, C. J. Am. Chem. Soc. 1989,
111, 8872.
(CDCl3, 300 MHz) l 7.30 (m, 5H), 5.98 (d, 1H, J=3.8),
4.72 (d, 1H, J=11.8), 4.65 (d, 1H), 4.45 (d, 1H, J=11.9),
4.39–4.34 (m, 4H), 4.01 (m, 1H), 3.99 (m, 2H), 2.52 (m,
2H), 2.15 (m, 1H), 2.01 (m, 1H), 1.85 (m, 2H), 1.50 (s,
3H), 1.33 (s, 3H), 1.25 (m, 2H), 0.8 (t, 3H, J=7.31); 13C
NMR l 172.8, 137.4, 128.8, 128.3, 128.0, 112.1, 105.5,
82.3, 81.8, 78.3, 72.1, 62.6, 57.3, 39.2, 34.1, 32.4, 29.9, 27.0,
26.5, 22.3, 14.1.