Journal of the American Chemical Society
Page 8 of 10
(31)
Charrier, N.; Quiclet-Sire, B.; Zard, S. Z. Allylic Alcohols as
Competing Radical and Anionic Cleavage Reactions. J. Am.
Radical Allylating Agents. An Overall Olefination of
Aldehydes and Ketones. J. Am. Chem. Soc. 2008, 130 (28),
8898–8899.
Debien, L.; Quiclet-Sire, B.; Zard, S. Z. Allylic Alcohols:
Ideal Radical Allylating Agents? Acc. Chem. Res. 2015, 48
(5), 1237–1253.
Priya, S.; Weaver, J. D. Prenyl Praxis: A Method for Direct
Photocatalytic Defluoroprenylation. J. Am. Chem. Soc. 2018,
140 (47), 16020–16025.
Wada, M.; Noda, Y.; Nishikata, T. Exchanging Alkyl Groups
through Unstrained C−C Bond Cleavage in the Presence of a
Copper Catalyst. Chem. – Asian J. 2017, 12 (9), 978–981.
Debien, L.; Zard, S. Z. From a Remarkable Manifestation of
Polar Effects in a Radical Fragmentation to the Convergent
Synthesis of Highly Functionalized Ketones. J. Am. Chem.
Soc. 2013, 135 (10), 3808–3811.
Xu, Y.; Wu, Z.; Jiang, J.; Ke, Z.; Zhu, C. Merging Distal
Alkynyl Migration and Photoredox Catalysis for Radical
Trifluoromethylative Alkynylation of Unactivated Olefins.
Angew. Chem. Int. Ed. 2017, 56 (16), 4545–4548.
Tang, X.; Studer, A. α-Perfluoroalkyl-β-Alkynylation of
Alkenes via Radical Alkynyl Migration. Chem. Sci. 2017, 8,
6888-6892.
Li, W.; Xu, W.; Xie, J.; Yu, S.; Zhu, C. Distal Radical
Migration Strategy: An Emerging Synthetic Means. Chem.
Soc. Rev. 2017, 47, 654-667.
Tang, X.; Studer, A. Alkene 1,2-Difunctionalization by
Radical Alkenyl Migration. Angew. Chem. Int. Ed. 2018, 57
(3), 814–817.
Wu, X.; Zhu, C. Recent Advances in Radical-Mediated C—C
Bond Fragmentation of Non-Strained Molecules. Chin. J.
Chem. 2019, 37 (2), 171–182.
Chem. Soc. 1959, 81 (21), 5760–5767.
1
2
3
4
5
6
7
8
(50)
(51)
Evans, D. A.; Baillargeon, D. J. Intrinsic Fragmentation
Modes of Primary Alkoxides. Tetrahedron Lett. 1978, 19
(36), 3315–3318.
Schenck, G. O.; Matthias, G.; Pape, M.; Cziesla, M.; von
Bünau, G.; Roselius, E.; Koltzenburg, G. Ionische und
radikalische Spaltungsreaktionen des Benzpinakols. Liebigs
Ann. Chem. 1968, 719 (1), 80–95.
Russell, G. A.; Young, M. C. Semidiones. III. Radical Ions
Derived from Ninhydrin and Alloxan. J. Am. Chem. Soc.
1966, 88 (9), 2007–2014.
Zalibera, M.; Nesvadba, P.; Gescheidt, G. Reaction of
Benzopinacol with Non-Ionic Bases: Reversing the Pinacol
Coupling. Org. Lett. 2013, 15 (18), 4627–4629.
Tang, X.; Studer, A. Sodium-Ketyl Radical Anions by
Reverse Pinacol Reaction and Their Coupling with
Iodoarenes. Org. Lett. 2016, 18 (17), 4448–4450.
Spaccini, R.; Pastori, N.; Clerici, A.; Punta, C.; Porta, O. Key
Role of Ti(IV) in the Selective Radical−Radical Cross-
Coupling Mediated by the Ingold-Fischer Effect. J. Am.
Chem. Soc. 2008, 130 (52), 18018–18024.
(32)
(33)
(34)
(35)
(52)
(53)
(54)
(55)
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(36)
(37)
(38)
(39)
(40)
(41)
(56)
(57)
Studer, A.; Curran, D. P. The Electron Is a Catalyst. Nat.
Chem. 2014, 6 (9), 765–773.
Syroeshkin, M. A.; Kuriakose, F.; Saverina, E. A.; Timofeeva,
V. A.; Egorov, M. P.; Alabugin, I. V. Upconversion of
Reductants. Angew. Chem. Int. Ed. 2019, 58 (17), 5532–5550.
We did not find computational evidence for a concerted
reaction in the course of our study.
Kalinowski, M. K.; Grabowski, Z. R.; Pakula, B. Reactivity
of Ketyl Free Radicals. Part 1.—Acid Dissociation of
Aromatic Ketyls and Pinacols. Trans. Faraday Soc. 1966, 62,
918–925.
Ketyl radicals tend to exhibit lower pKa values than alcohols
of similar structure (e.g., pKa of the ketyl radical derived from
acetone = 12.1 and pKa of isopropanol = 17.1). See: Laroff,
G. P.; Fessenden, R. W. Equilibrium and Kinetics of the Acid
Dissociation of Several Hydroxyalkyl Radicals. J. Phys.
Chem. 1973, 77 (10), 1283–1288.
Jeschke, P. The Unique Role of Fluorine in the Design of
Active Ingredients for Modern Crop Protection.
ChemBioChem 2004, 5 (5), 570–589.
(58)
(59)
Evans, D. A.; Golob, A. M. [3,3]Sigmatropic Rearrangements
of 1,5-Diene Alkoxides. Powerful Accelerating Effects of the
Alkoxide Substituent. J. Am. Chem. Soc. 1975, 97 (16), 4765–
4766.
Evans, D. A.; Baillargeon, D. J.; Nelson, J. V. A General
Approach to the Synthesis of 1,6-Dicarbonyl Substrates. New
(60)
(42)
(43)
Applications
of
Base-Accelerated
Oxy-Cope
(61)
(62)
Rearrangements. J. Am. Chem. Soc. 1978, 100 (7), 2242–
2244.
Boyle, W. J.; Bunnett, J. F. Relative Reactivities of Methanol
and Methoxide Ion as Hydrogen Atom Donors to the P-
Nitrophenyl Radical. J. Am. Chem. Soc. 1974, 96 (5), 1418–
1422.
Steigerwald, M. L.; Goddard III, W. A.; Evans, D. A.
Theoretical Studies of the Oxy Anionic Substituent Effect. J.
Am. Chem. Soc. 1979, 101 (8), 1994–1997.
Gawlita, E.; Lantz, M.; Paneth, P.; Bell, A. F.; Tonge, P. J.;
Anderson, V. E. H-Bonding in Alcohols Is Reflected in the
Cα−H Bond Strength:ꢀ Variation of C−D Vibrational
Frequency and Fractionation Factor. J. Am. Chem. Soc. 2000,
122 (47), 11660–11669.
Jeffrey, J. L.; Terrett, J. A.; MacMillan, D. W. C. O–H
Hydrogen Bonding Promotes H-Atom Transfer from α C–H
Bonds for C-Alkylation of Alcohols. Science 2015, 349
(6255), 1532–1536.
Amatore, C.; Badoz-Lambling, J.; Bonnel-Huyghes, C.;
Pinson, J.; Saveant, J. M.; Thiebault, A. Hydrogen Atom
Transfer Oxidation of Primary and Secondary Alcoholates
into Aldehydes and Ketones by Aromatic Halides in Liquid
Ammonia. A New Electrochemically Induceable Reaction. J.
Am. Chem. Soc. 1982, 104 (7), 1979–1986.
Dewanji, A.; Mück-Lichtenfeld, C.; Studer, A. Radical
Hydrodeiodination of Aryl, Alkenyl, Alkynyl, and Alkyl
Iodides with an Alcoholate as Organic Chain Reductant
through Electron Catalysis. Angew. Chem. Int. Ed. 2016, 55
(23), 6749–6752.
Müller, K.; Faeh, C.; Diederich, F. Fluorine in
Pharmaceuticals: Looking Beyond Intuition. Science 2007,
317 (5846), 1881–1886.
Hagmann, W. K. The Many Roles for Fluorine in Medicinal
Chemistry. J. Med. Chem. 2008, 51 (15), 4359–4369.
Sun, X.; Wang, W.; Li, Y.; Ma, J.; Yu, S. Halogen-Bond-
Promoted Double Radical Isocyanide Insertion under Visible-
(63)
(64)
(44)
(45)
Light
Irradiation:
Synthesis
of
2-Fluoroalkylated
Quinoxalines. Org. Lett. 2016, 18 (18), 4638–4641.
Wang, Y.; Wang, J.; Li, G.-X.; He, G.; Chen, G. Halogen-
Bond-Promoted Photoactivation of Perfluoroalkyl Iodides: A
Photochemical Protocol for Perfluoroalkylation Reactions.
Org. Lett. 2017, 19 (6), 1442–1445.
Donald, J. R.; Berrell, S. L. Radical Cyanomethylation via
Vinyl Azide Cascade-Fragmentation. Chem. Sci. 2019, 10
(22), 5832–5836.
Greulich, T. W.; Daniliuc, C. G.; Studer, A. N-
Aminopyridinium Salts as Precursors for N-Centered
Radicals – Direct Amidation of Arenes and Heteroarenes.
Org. Lett. 2015, 17 (2), 254–257.
Basch, C. H.; Liao, J.; Xu, J.; Piane, J. J.; Watson, M. P.
Harnessing Alkyl Amines as Electrophiles for Nickel-
Catalyzed Cross Couplings via C–N Bond Activation. J. Am.
Chem. Soc. 2017, 139 (15), 5313–5316.
(65)
(46)
(47)
(66)
(67)
(68)
(48)
(49)
(69)
(70)
Klauck, F. J. R.; James, M. J.; Glorius, F. Deaminative
Strategy for the Visible-Light-Mediated Generation of Alkyl
Radicals. Angew. Chem. Int. Ed. 2017, 56 (40), 12336–12339.
Plunkett, S.; Basch, C. H.; Santana, S. O.; Watson, M. P.
Harnessing Alkylpyridinium Salts as Electrophiles in
Cram, D. J.; Langemann, A.; Lwowski, W.; Kopecky, K. R.
Electrophilic Substitution at Saturated Carbon. IV.
ACS Paragon Plus Environment