3
Scheme 5. Sulfamic acid catalyzed ring-opening reaction of 20.
two successive reactions occurred; opening of the epoxide ring
by nucleophilic attack of the carbonyl group of the endo-urethane
moiety, followed by acetylation. Therefore, we decided to first
convert diisocyanate 19 to diamine 24. Diisocyanate 19 was
reacted with 8 M HCl at room temperature to give salt 23 in 95%
yield. The reaction of 23 with a solution of 0.5 M NaOH at 0 °C
gave the desired compound diamine 24 in 23% yield.
Within 24 the epoxide protons resonated as doublets at 3.62
and 3.34 ppm with a coupling constant of J = 3.4 Hz. The bridge
proton resonances appear at 4.07 and 4.70 ppm as a singlet and
doublet (J = 4.7 Hz), respectively. The 6 resonance 13C-NMR
spectrum was also in agreement with the proposed structure.
Figure 3. Crystal structure of 22.
Scheme 6. Synthesis of diamine 24.
−3529. (e) Brennan,
Bujons, J.; Llebaria, A. J. Org. Chem. 2015, 80, 3512
The synthesis of synthons 22 and 24 was achieved from
The
M. B.; Csatayova, K.; Davies, S. G.; Fletcher, A. M.; Green, W. D.; Lee,
J. A.; Roberts, P. M.; Russell, A. J.; Thomson, J. E. J. Org. Chem. 2015,
80, 6609-6618. (f) Ecer, K.; Salamci, E. Tetrahedron 2014, 70, 8389-
8396. (g) Adams, D. R.; van Kempen, J.; Hudlický, J. R.; Hudlický, T.
Heterocycles, 2014, 88, 1255-1274. (h) Griffen, J. A.; White, J. C.;
Kociok-Köhn, G.; Lloyd, M. D.; Wells, A.; Arnot, T. C.; Lewis, S. E.
Tetrahedron, 2013, 69, 5989-5997. (i) Pilgrim, S.; Kociok-Köhn, G.;
Lloyd, M. D.; Lewis, S. E. Chem. Commun. 2011, 47, 4799-4801.
5. (a) Aydin, G.; Ally, K.; Aktas, F.; Sahin, E.; Baran, A.; Balci, M. Eur. J.
Org. Chem. 2014, 4988 –4955. (b) Ekmekçi, Z.; Balci, M. Eur. J. Org.
Chem. 2012, 4988–4955. (c) Kurbanoglu, N. I.; Celik, M.; Kilic, H.; Alp,
C.; Sahin, E.; Balci, M. Tetrahedron 2010, 66, 3485-3489. (d) Kelebekli,
L.; Celik, M.; Sahin, E.; Kara, Y.; Balci, M. Tetrahedron Lett. 2006, 47,
7031-7034.
trans-7-oxabicyclo[2.2.1]-ept-5-ene-2,3-dicarboxylate.
amine functionalities were introduced by Curtius rearrangement
of the corresponding acyl azide while the oxygen functionality
was introduced to the molecule by epoxidation of the double
bond in 16. This methodology opens up a way to synthesize
versatile isomeric aminoinositol derivatives and further reactions
with compounds 22 and 24 are currently in progress.
Acknowledgments
Financial support from the Turkish Academy of Sciences
(TUBA), and Middle East Technical University (METU) is
gratefully acknowledged.
6. For a reviews on 7-oxabicyclo[2.2.1]heptane intermediates, see: Vogel,
P.; Cossy, J.; Plumet, J. Arjona, O. Tetrahedron 1999, 55, 13521-13642.
Chiu, P.; Lautens, M. Top. Curr. Chem. 1997, 190, 1-85.
7. (a) Sawama, Y.; Kawajiri, T.; Asai, S.; Yasukawa, N.; Shishido, Y.;
Monguchi, Y.; Sajiki, H. J. Org. Chem. 2015, 80, 5556–5565. (b) Xue,
Y. P.; J. Org. Chem. 2011, 76, 57–64. (c) Mao, Y.; Lim, K. M. H.;
Ganguly, R.; Mathey, F. Org. Lett. 2012, 14, 4974–4975. (d) Li, W.-D.
Z.; Gao, Z.-H. Org. Lett. 2005, 7, 2917-2920. (e) Baran, A; Kazaz, C;
Secen, H.; Sutbeyaz, Y. Tetrahedron 2004, 59, 3643-3648. (e) Koreeda,
M.; Jung, K.-J.; Hirota, M. J. Am. Chem. Soc. 1990, 7413-7414.
References and notes
1. For recent reviews on aminocyclitols, see: (a) Huang, G. Curr. Org.
Chem. 2012, 16, 115 –120. (b) Diaz, L.; Delgado, A. Curr. Med. Chem.
2010, 17, 2393-2418. (c) Delgado, A. Eur. J. Org. Chem. 2008, 3893-
3906.
2. (a) Roscales, S.; Plumet, J. Int. J. Carbohyd. Chem. 2016, 1-42. (b)
Altun, Y.; Dogan, S. D.; Balci, M. Tetrahedron 2014, 70, 4884-4890. (c)
Baran, A.; Cambul, S.; Nebioglu, M.; Balci, M. J. Org. Chem. 2012, 77,
5086-5097. (d) Kara, Y.; Balci, M. Tetrahedron 2003, 59, 2063-2066
3. Ogawa, S.; Ohmura, M.; Hisamatsu, S. Synthesis 2000, 312-316.
4. (a) Harit, V. K.; Ramesh, N. G. J. Org. Chem. 2016, 81, 11574−11586.
(b) Worawalai, W.; Sompornpisut, P.; Wacharasindhu, S.;
Phuwapraisirisan, P. Carbohyd. Res. 2016, 429, 155–162. (c) Gerstner,
N. C.; Adams C. S.; Grigg R. D.; Tretbar M.; Rigoli J. W.; Schomaker J.
M. Org Lett. 2016, 18, 284-287. (d) Trapero, A.; Egido-Gabas, M.;
8. Lautens, M.; Ma S. Tetrahedron Lett. 1996, 37, 1727-1730.
9. (a) Huang, Y.; Ma, C.; Lee, Y. X.; Huang, R.-Z.; Zhao, Y. Angew. Chem.
Int. Ed. 2015, 36, 13696-13700. (b) Zhou, H.; Li, J.; Yang, H.; Xia, C.;
Jiang, G. Org. Lett. 2015, 17, 4628−4631. (c) Carlson, E.; Haner, J.;
McKee, M.; Tam, W. G. Org. Lett. 2014, 16, 1776-17779. (d) Schindler,
C. S.; Diethelm, S.; Carreira, E. M. Angew. Chem. Int. Ed. 2009, 48,
6296–6299. (e) Nishimura, T.; Kawamoto, T.; Sasaki, K.; Tsurumaki, E.;
Hayashi, T. J. Am. Chem. Soc. 2007, 129, 1492-1493. (f) Padwa, A.;
Wang, Q. J. Org. Chem. 2006, 71, 3210-3220. (g) Lautens, M.; Fagnou,
K.; Hiebert, S. Acc. Chem. Res. 2003, 36, 48-58. (h) Moinet, C.; Fiaud,
J.-C. Tetrahedron Lett. 1995, 36, 2051-2052.