Communication
ChemComm
2, 58–63; (e) J. Fei and J. Li, Adv. Mater., 2015, 27, 314–319; ( f ) K. Liu,
R. Xing, Y. Li, Q. Zou, H. Moehwald and X. Yan, Angew. Chem., Int.
Ed., 2016, 55, 12503–12507; (g) Z. Zhang, Y. Zhu, X. Chen, H. Zhang
and J. Wang, Adv. Mater., 2019, 31, 1806626.
7 (a) J. Tian, Z.-Y. Xu, D.-W. Zhang, H. Wang, S.-H. Xie, D.-W. Xu,
Y.-H. Ren, H. Wang, Y. Liu and Z.-T. Li, Nat. Commun., 2016,
7, 11580; (b) D. Liu, J. Wang, X. Bai, R. Zong and Y. Zhu, Adv. Mater.,
2016, 28, 7284–7290; (c) A. Krieger, J. P. Fuenzalida Werner,
G. Mariani and F. Groehn, Macromolecules, 2017, 50, 3464–3475;
(d) S. Fruehbeisser and F. Groehn, J. Am. Chem. Soc., 2012, 134,
14267–14270; (e) M. de Torres, R. van Hameren, R. J. M. Nolte,
A. E. Rowan and J. A. A. W. Elemans, Chem. Commun., 2013, 49,
10787–10789.
8 (a) N. Zhang, L. Wang, H. Wang, R. Cao, J. Wang, F. Bai and H. Fan,
Nano Lett., 2018, 18, 560–566; (b) Y. Liu, L. Wang, H. Feng, X. Ren,
J. Ji, F. Bai and H. Fan, Nano Lett., 2019, 19, 2614–2619; (c) J. Wang,
Y. Zhong, L. Wang, N. Zhang, R. Cao, K. Bian, L. Alarid,
R. E. Haddad, F. Bai and H. Fan, Nano Lett., 2016, 16, 6523–6528;
(d) D. Zhang, Y. Liu, Y. Fan, C. Yu, Y. Zheng, H. Jin, L. Fu, Y. Zhou
and D. Yan, Adv. Funct. Mater., 2016, 26, 7652–7661; (e) L. Yang,
M. Wang, P. M. Slattum, B. R. Bunes, Y. Wang, C. Wang and L. Zang,
ACS Appl. Mater. Interfaces, 2018, 10, 19764–19772; ( f ) H. Zhao,
D. Zhang, P. Du, H. Li, C. Liu, Y. Li, H. Cao, J. C. Crittenden and
Q. Huang, J. Hazard. Mater., 2015, 297, 269–277; (g) P. Du, H. Zhao,
C. Liu, Q. Huang and H. Cao, Water Res., 2016, 106, 488–495.
9 (a) C. D. Jones, H. T. D. Simmons, K. E. Horner, K. Liu,
R. L. Thompson and J. W. Steed, Nat. Chem., 2019, 11, 375–381;
(b) Y. Wang, S. Oldenhof, F. Versluis, M. Shah, K. Zhang, V. van
Steijn, X. Guo, R. Eelkema and J. H. van Esch, Small, 2019,
15, 1804154; (c) G. Yu, X. Yan, C. Han and F. Huang, Chem. Soc.
Rev., 2013, 42, 6697–6722; (d) Z. Shen, Y. Jiang, T. Wang and M. Liu,
J. Am. Chem. Soc., 2015, 137, 16109–16115; (e) Z. Shen, Y. Sang,
T. Wang, J. Jiang, Y. Meng, Y. Jiang, K. Okuro, T. Aida and M. Liu,
Nat. Commun., 2019, 10, 1–8.
10 (a) L. E. Buerkle and S. J. Rowan, Chem. Soc. Rev., 2012, 41,
6089–6102; (b) W. Edwards and D. K. Smith, J. Am. Chem. Soc.,
2014, 136, 1116–1124; (c) J. Ruiz-Olles and D. K. Smith, Chem. Sci.,
2018, 9, 5541–5550.
11 (a) Y. Li, T. Wang and M. Liu, Soft Matter, 2007, 3, 1312–1317;
(b) P. Duan, H. Cao, L. Zhang and M. Liu, Soft Matter, 2014, 10,
5428–5448; (c) P. Duan, Y. Li, J. Jiang, T. Wang and M. Liu, Sci.
China: Chem., 2011, 54, 1051–1063.
12 (a) X. Li, Z. Zheng, M. Han, Z. Chen and G. Zou, J. Phys. Chem. B,
2007, 111, 4342–4348; (b) G. Dyrda, R. Slota, M. A. Broda and
G. Mele, Res. Chem. Intermed., 2016, 42, 3789–3804; (c) G. De Luca,
A. Romeo and L. M. Scolaro, J. Phys. Chem. B, 2006, 110, 14135–14141;
(d) M. Zannotti, R. Giovannetti, B. Minofar, D. Reha, L. Plackova,
C. A. D’Amato, E. Rommozzi, H. V. Dudko, N. Kari and M. Minicucci,
Spectrochim. Acta, Part A, 2018, 193, 235–248; (e) J. R. Eskelsen,
Y. Wang, Y. Qui, M. Ray, M. Handlin, K. W. Hipps and U. Mazur,
J. Porphyrins Phthalocyanines, 2012, 16, 1233–1243; ( f ) Y. Zhao, X. Cai,
Y. Zhang, C. Chen, J. Wang and R. Pei, Nanoscale, 2019, 11,
12250–12258.
supramolecular gels represent a new approach for the fabrica-
tion of photocatalytic systems.
The authors gratefully acknowledge support for this work
from the Natural Science Foundation of China (no. 21631003,
21471015, 21671017, 21474118 and 21773006), Major Science
and Technology Program for Water Pollution Control and
Treatment (2017ZX07402001), Beijing Municipal Commission
of Education, and University of Science and Technology Beijing.
Conflicts of interest
There are no conflicts to declare.
Notes and references
1 (a) S. Caffarri, T. Tibiletti, R. C. Jennings and S. Santabarbara, Curr.
Protein Pept. Sci., 2014, 15, 296–331; (b) Y. Mazor, A. Borovikova,
I. Caspy and N. Nelson, Nat. Plants, 2017, 3, 17014; (c) H. Toporik,
I. Carmeli, I. Volotsenko, M. Molotskii, Y. Rosenwaks, C. Carmeli
and N. Nelson, Adv. Mater., 2012, 24, 2988–2991, S2988/2981-S2988/
2915.
2 (a) R. Croce and H. van Amerongen, Nat. Chem. Biol., 2014, 10,
492–501; (b) H. Hashimoto, Y. Sugai, C. Uragami, A. T. Gardiner and
R. J. Cogdell, J. Photochem. Photobiol., C, 2015, 25, 46–70; (c) S. K.
Ravi, V. S. Udayagiri, L. Suresh and S. C. Tan, Adv. Funct. Mater.,
2018, 28, 1705305.
3 (a) T. Brixner, R. Hildner, J. Koehler, C. Lambert and F. Wuerthner,
Adv. Energy Mater., 2017, 7, 1700236; (b) J. Neugebauer, J. Phys.
Chem. B, 2008, 112, 2207–2217; (c) X.-L. Zeng, K. Tang, N. Zhou,
M. Zhou, H. J. M. Hou, H. Scheer, K.-H. Zhao and D. Noy, J. Am.
Chem. Soc., 2013, 135, 13479–13487.
4 (a) R. V. Kazantsev, A. J. Dannenhoffer, A. S. Weingarten, B. T.
Phelan, B. Harutyunyan, T. Aytun, A. Narayanan, D. J. Fairfield,
J. Boekhoven, H. Sai, A. Senesi, P. I. O’Dogherty, L. C. Palmer,
M. J. Bedzyk, M. R. Wasielewski and S. I. Stupp, J. Am. Chem. Soc.,
2017, 139, 6120–6127; (b) A. S. Weingarten, R. V. Kazantsev,
L. C. Palmer, M. McClendon, A. R. Koltonow, A. P. S. Samuel,
D. J. Kiebala, M. R. Wasielewski and S. I. Stupp, Nat. Chem., 2014,
6, 964–970; (c) A. S. Weingarten, R. V. Kazantsev, L. C. Palmer,
D. J. Fairfield, A. R. Koltonow and S. I. Stupp, J. Am. Chem. Soc., 2015,
137, 15241–15246; (d) C. Felip-Leon, F. Guzzetta, B. Julian-Lopez,
F. Galindo and J. F. Miravet, J. Phys. Chem. C, 2017, 121,
21154–21159; (e) B. Maiti, A. Abramov, R. Perez-Ruiz and D. Diaz
Diaz, Acc. Chem. Res., 2019, 52, 1865–1876; ( f ) K. Kong, S. Zhang,
Y. Chu, Y. Hu, F. Yu, H. Ye, H. Ding and J. Hua, Chem. Commun.,
2019, 55, 8090–8093.
5 (a) B. Yuan, H. Yang, Z. Wang and X. Zhang, Langmuir, 2014, 30,
15462–15467; (b) C. Zhang, P. Chen, H. Dong, Y. Zhen, M. Liu and
W. Hu, Adv. Mater., 2015, 27, 5379–5387; (c) P. Guo, P. Chen and
M. Liu, ACS Appl. Mater. Interfaces, 2013, 5, 5336–5345; (d) G. Geng,
Z. Wang, P. Chen, B. Guan, C. Yang and M. Liu, Phys. Chem. Chem.
Phys., 2018, 20, 8488–8497; (e) J. Kwak, M.-C. Kim and S.-Y. Lee,
Nanoscale, 2016, 8, 15064–15070; ( f ) C. Zhou, X. Feng, R. Wang,
G. Yang, T. Wang and J. Jiang, ACS Omega, 2018, 3, 10638–10646.
6 (a) B. Sun, K. Tao, Y. Jia, X. Yan, Q. Zou, E. Gazit and J. Li, Chem. Soc.
Rev., 2019, 48, 4387–4400; (b) J. Han, K. Liu, R. Chang, L. Zhao and
X. Yan, Angew. Chem., Int. Ed., 2019, 58, 2000–2004; (c) Q. Zou,
K. Liu, M. Abbas and X. Yan, Adv. Mater., 2016, 28, 1031–1043;
(d) K. Liu, M. Abass, Q. Zou and X. Yan, Green Energy Environ., 2017,
13 (a) Y. Li, P. Duan and M. Liu, Chem. – Eur. J., 2017, 23, 8225–8231;
(b) X. Wang, F. Xie, P. Duan and M. Liu, Langmuir, 2016, 32,
12534–12541.
14 (a) F. Abou-Chahine, D. Fujii, H. Imahori, H. Nakano, N. V. Tkachenko,
Y. Matano and H. Lemmetyinen, J. Phys. Chem. B, 2015, 119,
7328–7337; (b) A. H. Al-Subi, M. Niemi, N. V. Tkachenko and
H. Lemmetyinen, J. Phys. Chem. A, 2012, 116, 9653–9661;
(c) T. Umeyama, J. Mihara, H. Hayashi, N. Kadota, V. Chukharev,
N. V. Tkachenko, H. Lemmtyinen, K. Yoshida, S. Isoda and
H. Imahori, Chem. Commun., 2011, 47, 11781–11783.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2019