3a. Yield 48%; mp 249-250°C (ethanol–DMF, 10:1). IR spectrum, ν, cm-1: 1625-1615, 1565, 1550;
1
3200-3180. H NMR spectrum (CDCl3), δ, ppm: 1.1 (6H, s, 2CH3); 2.44 (4H, s, 2CH2); 7.36 (4H, m, C6H4);
11.91 (2H, br. s, 2NH). Found, %: C 70.32; H 6.53; N 10.94. C15H16N2O2. Calculated, %: C 70.32; H 6.71;
N 10.97.
3b. Yield 64%; mp 274-275°C (ethanol–DMF, 10:1). IR spectrum, ν, cm-1: 1624, 1580-1560; 3200.
1H NMR spectrum (CDCl3), δ, ppm: 1.11 (6H, s, 2CH3); 2.44 (7H, s, 2CH2, CH3); 7.22 (3H, m, C6H3); 12.72
(2H, br. s, 2NH). Found, %: C 70.88; H 6.60; N 10.19. C16H18N2O2. Calculated, %: C 71.09; H 6.71; N 10.36.
1
3c. Yield 29%; mp 345-346°C (DMF). IR spectrum, ν, cm-1: 1630, 1612. 1570-1550; 3200. H NMR
spectrum (DMSO-d6), δ, ppm: 1.08 (6H, s, 2CH3); 2.38 (4H, s, 2CH2); 7.88 (1H, d, J = 8 Hz, C6H3); 8.27 (1H,
dd, J = 8 Hz, J = 2 Hz, C6H3); 8.66 (1H, d, J = 2 Hz, C6H3); 11.49 (2H, br. s, 2NH). Found, %: C 59.61; H 5.05;
N 13.86. C15H15N3O4. Calculated, %: C 59.79; H 5.02; N 13.95.
3d. Yield 51%; mp 360-362°C (pyridine–DMF, 10:1). IR spectrum, ν, cm-1: 1625-1615, 1565, 1550,
1
1515; 3200-3180. H NMR spectrum (CDCl3), δ, ppm: 1.02 (6H, s, 2CH3); 2.33 (4H, s, 2CH2); 7.83 (2H, m,
C6H3); 8.34 (1H, s, C6H3); 12.9 (1H, br. s, COOH); 13.21 (2H, br. s, 2NH). Found, %: C 63.75; H 5.25; N 9.19.
C16H16N2O4. Calculated, %: C 63.99; H 5.37; N 9.33.
3e. Yield 63%; mp 290-291°C (pyridine). IR spectrum, ν, cm-1: 1640, 1620, 1590, 1550, 1535; 3220.
1H NMR spectrum (CDCl3), δ, ppm: 1.11 (6H, s, 2CH3); 2.44 (4H, s, 2CH2); 7.28-8.02 (8H, m, C6H5, C6H3);
12.94 (2H, s, 2NH). Found, %: C 73.13; H 5.50; N 7.70. C22H20N2O3. Calculated, %: C 73.32; H 5.59; N 7.77.
1
3f. Yield 35%; mp 376-378°C (acetic acid). IR spectrum, ν, cm-1: 1615, 1570; 3300-3200. H NMR
spectrum (DMSO-d6), δ, ppm: 1.02 (12H, s, 4CH3); 2.41 (8H, s, 4CH2); 7.74 (6H, m, 2C6H3); 13.13 (4H, br. s,
4NH). Found, %: C 70.40; H 5.81; N 10.83. C30H30N4O4. Calculated, %: C 70.57; H 5.92; N 10.97.
1
3g. Yield 51%; mp 300-301°C (pyridine). IR spectrum, ν, cm-1: 1628, 1612, 1556; 3200 cm-1. H NMR
spectrum (CDCl3), δ, ppm: 1.09 (6H, s, 2CH3); 2.44 (4H, s, 2CH2); 7.24 (1H, dd, J = 7.5, J = 4.5 Hz, C5H3N);
7.86 (1H, dd, J = 7.5, J =1.5 Hz, C5H3N); 8.38 (1H, dd, J =4.5 Hz, J = 1.5 Hz, C5H3N); 12.99 (2H, br. s, 2NH).
Found, %: C 65.15; H 5.73; N 16.11. C14H15N3O2. Calculated, %: C 65.36; H 5.88; N 16.33
X-ray Structural Investigation. The nitrobenzimidazole 3c was separated as a yellowish colored
powder. The unit cell parameters (Table 1) were determined using the TREOR90 program [19] for the positions
of 30 peaks with the measurements made in a Guinier chamber in the range 0-50° and using CuKα1 radiation.
The space group P21/n was selected based on conditions of systematic extinction. Collection of diffraction data
for solution and refinement of the structure was carried out on a Philips X'pert laboratory θ-2θ diffractometer
with a PW 3056/00 goniometer using CuKα radiation (Ni filter, 40 kV/mA) with stepwise scanning in the range
6-60° 2θ in 0.02° steps and calculation time 15 s for each step. The structure was solved by a systematic search
method [20] and refined using the Rietveld method with the MRIA program [21] to values of Rp = 6.0%,
R
wp = 8.9%, and Rexp = 3.2% (Fig. 1). The atomic coordinates are given in Table 2. In the refinement process the
boundaries of the available bond lengths were applied. The overall thermal factor Uiso for the non-hydrogen
atoms was refined to 0.093(2) Å. For the hydrogen atoms the value Uiso = 0.05 Å2 was fixed.
The crystal packing of the nitrobenzimidazole molecule is characterized as an infinite linear network
(Fig. 2) forming centrosymmetric hydrogen bonds on both sides of the molecule (Table 3).
REFERENCES
1.
A. Strakovs, M. V. Petrova, N. N. Tonkikh, E. E. Brooks, S. J. Biehle, and G. P. Kreishman, J. Org.
Chem., 64, 1426 (1999).
A. N. Andin, V. A. Kaminsky, and S. V. Dubovitsky, Khim. Geterotsikl. Soedin., 1497 (1999).
M. C. Pirrung, J. Zhang, K. Lackey, D. D. Sternbach, and F. Brown, J. Org. Chem., 60, 2112 (1995).
2.
3.
728