Um et al.
(e.g., Mg2+, Ca2+, Zn2+, Cu2+, Co2+, and Mn2+)6 have also
exhibited significant catalytic effects in nucleophilic substitution
reactions of aryl diphenylphosphinates and their analogues.
Besides, the La3+ ion has been shown to be highly effective on
alkaline methanolysis of phosphate di- and triesters.7
SCHEME 1
Kinetic studies have also been performed intensively to under-
stand the reaction mechanisms of biological processes.1-6,8-12
Linear free-energy relationships such as Hammett and Brønsted
equations have most commonly been employed to investigate
reaction mechanisms.1-6,8-12 For example, alkaline ethanolysis
of aryl dimethylphosphinates has been concluded to proceed
through a pentacoordinate intermediate with its formation being
the rate-determining step (RDS) on the basis of the fact that σo
constants result in significantly better Hammett correlations than
σ- constants.5a A similar conclusion has been drawn for alkaline
hydrolysis of aryl diphenylphosphinates8a,8b and imidazole
catalyzed hydrolysis of aryl diphenylphosphinates.9a
On the contrary, nucleophilic substitution reactions of 4-ni-
trophenyl diphenylphosphinate with aryloxides have been
concluded to proceed through a concerted mechanism.9b The
evidence provided for a concerted mechanism is a linear
Brønsted-type plot for the reactions with a series of substituted
phenoxides whose pKa values straddle the basicity of the leaving
4-nitrophenoxide.9b A similar result has been obtained for
reactions of aryl dimethylphosphinothioates with aryloxides (i.e.,
a linear Brønsted-type plot for the reactions of 4-nitrophenyl
dimethylphosphinothioate with aryloxides having a wide pKa
range (i.e., pKa ) 5.53-10.2)).1c Besides, σ- constants have
resulted in much better Hammett correlations than σo constants
for reactions of aryl dimethylphosphinothioates with phenoxide.
Accordingly, Hengge and co-workers have concluded that the
reactions proceed through a concerted mechanism.1c This
conclusion has been further supported by the primary 18O and
secondary 15N kinetic isotope effects.1c
(3) (a) Stairs, R. A.; Buncel, E. Can. J. Chem. 2006, 84, 1580-1591.
(b) Han, X.; Balakrishnan, V. K.; VanLoon, G. W.; Buncel, E. Langmuir
2006, 22, 9009-9017. (c) Churchill, D.; Cheung, J. C. F.; Park, Y. S.;
Smith, V. H.; VanLoon, G. W.; Buncel, E. Can. J. Chem. 2006, 84, 702-
708. (d) Balakrishnan, V. K.; Buncel, E.; van Loon, G. W. EnViron. Sci.
Technol. 2005, 39, 5824-5830. (e) Balakrishnan, V. K.; Han, X.; van Loon,
G. W.; Dust, J. M.; Toullec, J.; Buncel, E. Langmuir 2004, 20, 6586-
6593. (f) Bhattacharya, S.; Vemula, P. K. J. Org. Chem. 2005, 70, 9677-
9685. (g) Bhattacharya, S.; Kumar, V. P. Langmuir 2005, 21, 71-78. (h)
Bhattacharya, S.; Kumar, V. P. J. Org. Chem. 2004, 69, 559-562. (i)
Kumar, V. P.; Ganguly, B.; Bhattacharya, S. J. Org. Chem. 2004, 69, 8634-
8642. (j) Bunton, C. A.; Foroudian, H. J. Langmuir 1993, 9, 2832-2835.
(k) Toullec, J.; Moukawin, M. Chem. Commun. 1996, 221-222.
(4) (a) Terrier, F.; Rodriguez-Dafonte, P.; Le Guevel, E.; Moutiers, G.
Org. Biomol. Chem. 2006, 4, 4352-4363. (b) Terrier, F.; Le Guevel, E.;
Chartrousse, A. P.; Moutiers, G.; Buncel, E. Chem. Commun. 2003, 600-
601. (c) Bunton, C. A.; Nelson, S. E.; Quan, C. J. Org. Chem. 1982, 47,
1157-1160. (d) Couderc, S.; Toullec, J. Langmuir 2001, 17, 3819-3828.
(5) (a) Buncel, E.; Albright, K. G.; Onyido, I. Org. Biomol. Chem. 2004,
2, 601-610. (b) Nagelkerke, R.; Thatcher, G. R. J.; Buncel, E. Org. Biomol.
Chem. 2003, 1, 163-167. (c) Buncel, E.; Nagelkerke, R.; Thatcher, G. R.
J. Can. J. Chem. 2003, 81, 53-63. (d) Um, I. H.; Jeon, S. E.; Baek, M. H.;
Park, H. R. Chem. Commun. 2003, 3016-3017. (e) Pregel, M. J.; Buncel,
E. J. Am. Chem. Soc. 1993, 115, 10-14. (f) Gomez-Tagle, P.; Vargas-
Zuniga, I.; Taran, O.; Yatsimirsky, A. K. J. Org. Chem. 2006, 71, 9713-
9722. (g) Gordon, I. M.; Maskill, H. J. Chem. Soc., Perkin Trans. 2001, 2,
2059-2062. (h) Gordon, I. M.; Maskill, H. J. Chem. Soc., Chem. Commun.
1989, 1358. (i) Rao, S. N.; More O’Ferrall, R. A. J. Org. Chem. 1990, 55,
3244-3251. (j) More O’Ferrall, R. A. J. Chem. Soc., Perkin Trans. 1972,
2, 976-982.
(6) (a) Zalatan, J.; Herschlag, D. J. Am. Chem. Soc. 2006, 128, 1293-
1303. (b) O’Brien, P. J.; Herschlag, D. Biochemistry 2001, 40, 5691-5699.
(c) Catrina, I. E.; Hennge, A. C. J. Am. Chem. Soc. 1999, 121, 2156-
2163. (d) Herschlag, D.; Jencks, W. P. J. Am. Chem. Soc. 1987, 109, 4665-
4674. (e) Smolen, J. M.; Stone, A. T. EnViron. Sci. Technol. 1997, 31,
1664-1637. (f) Maxwell, C.; Neverov, A. A.; Brown, R. S. Org. Biomol.
Chem. 2005, 3, 4329-4336. (g) Lu, Z. L.; Neverov, A. A.; Brown, R. S.
Org. Biomol. Chem. 2005, 3, 3379-3387.
(7) (a) Gibson, G. T. T.; Neverov, A. A.; Teng, A. C. T.; Brown, R. S.
Can. J. Chem. 2005, 83, 1268-1276. (b) Tsang, J. S.; Neverov, A. A.;
Brown, R. S. J. Am. Chem. Soc. 2003, 125, 1559-1566. (c) Tsang, A. A.;
Neverov, A. A.; Brown, R. S. J. Am. Chem. Soc. 2003, 125, 7602-7607.
(d) Tsang, J. S. W.; Neverov, A. A.; Brown, R. S. Org. Biomol. Chem.
2004, 2, 3457-3463.
Only a few reports are available for aminolysis of phosphoryl
and related compounds.10-12 Reactions with amines have been
suggested to proceed either through a concerted or through a
stepwise mechanism. From studies of leaving group effects,
solvent effects, and activation parameters, Cook et al. have
concluded that aminolysis of aryl diphenylphosphinates and
related compounds in MeCN proceeds through a zwitterionic
pentacoordinate intermediate with its breakdown being the
RDS.10 However, Lee et al. have proposed that pyridinolysis
of phenyl-substituted phenyl chlorophosphates proceeds through
a concerted mechanism on the basis of linear Brønsted-type plots
with small ânuc values (ânuc ) 0.16-0.18).11
We have recently performed aminolysis of aryl diphenylphos-
phinates (1a-i) and concluded that the reactions proceed
through a concerted mechanism although σo constants result in
a better Hammett correlation than σ- constants.12 This was
because the Yukawa-Tsuno plot for the same reactions exhibits
a significantly better linearity than the Hammett plot correlated
with σo constants.12 The concerted mechanism has been further
supported from the linear Brønsted-type plot with ânuc ) 0.38
for the reactions of 2,4-dinitrophenyl diphenylphosphinate (1a)
with a series of alicyclic secondary amines.12
(8) (a) Cook, R. D.; Rahhal-Arabi, L. Tetrahedron Lett. 1985, 26, 3147-
3150. (b) Haake, P.; McCoy, D. R.; Okamura, W.; Alpha, S. R.; Wong, S.
W.; Tyssee, D. A.; McNeal, J. P.; Cook, R. D. Tetrahedron Lett. 1968,
5243-5246. (c) Wallerberg, G.; Haake, P. J. Org. Chem. 1981, 46, 43-
46.
We have extended our study to aminolysis of aryl diphe-
nylphosphinothioates (2a-i), the thio analogues of 1a-i, as
shown in Scheme 1. Replacement of O by a polarizable S atom
in the PdO bond of 1a-i would be expected to provide insights
into both the reactivity and the comparative reaction mechanism.
We report the effect of modification of the electrophilic center
from PdO to PdS on reactivity and reaction mechanisms. In
addition to our Brønsted analysis, we have analyzed the
substituent effects according to the dual-parameter Yukawa-
(9) (a) Williams, A.; Naylor, R. A. J. Chem. Soc. B 1971, 1967-1972.
(b) Bourne, N.; Chrystiuk, E.; Davis, A. M.; Williams, A. J. Am. Chem.
Soc. 1988, 110, 1890-1895.
(10) Cook, R. D.; Daouk, W. A.; Hajj, A. N.; Kabbani, A.; Kurku, A.;
Samaha, M.; Shayban, F.; Tanielian, O. V. Can. J. Chem. 1986, 64, 213-
219.
(11) (a) Guha, A. K.; Lee, H. W.; Lee, I. J. Org. Chem. 2000, 65, 12-
15. (b) Guha, A. K.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans. 1999,
2, 765-770.
(12) Um, I. H.; Shin, Y. H.; Han, J. Y.; Mishima, M. J. Org. Chem.
2006, 71, 7715-7720.
3824 J. Org. Chem., Vol. 72, No. 10, 2007