The D-serine-derived Garner aldehyde 5 provided an
attractive starting point for the synthesis because it reacts
with organometallic reagents with a high degree of diaste-
reoselectivity and little racemization.9 The diastereoselective
addition of vinyl metals to 5 may furnish the syn vinyl
alcohol, depending on the reaction conditions.10 The reagent
formed from in situ prepared vinyllithium and anhydrous
zinc dibromide in diethyl ether was found to provide the
syn alcohol as a solid with a 5:1 diastereoselectivity (syn:
anti) in 91% yield.11 The diastereoselectivity can be rational-
ized by considering the preferred transition state in each
reaction. The vinyl zinc bromide complex coordinated with
the carbamate carbonyl in the transition state is delivered to
the re face of the aldehyde carbonyl to afford the vinyl
alcohol syn-6. The chromatographic separation of a diaster-
eomeric mixture of alcohols 6 was incomplete. However,
the 67% de of the syn-preferred 6 was improved to 92% de
(72%) by one recrystallization. When the recrystallized 6
was treated with HCl gas in chloroform, it was converted to
the 1,3-acetonide 8 (69%) together with the recovery of syn-6
(24%) (Scheme 2).
Figure 1. Structure of 1-deoxygalactonojirimycin (1) and its
congeners (2 and 3).
goal involved the preparation of a new common chiral
building block, dioxanylpiperidene 4, which represents an
ideal precursor for the synthesis of 1-deoxygalactonojirimy-
cin (1) and its congeners (Figure 1). Herein we describe a
straightforward and stereoselective synthesis of 1-deoxyga-
lactonojirimycin and its congeners 1-3 via 4 starting from
the Garner aldehyde 57 using catalytic ring-closing metathesis
(RCM) for the construction of the piperidine ring.8
Our retrosynthetic analysis of 1-deoxyazasugars 1-3 is
outlined in Scheme 1. The common intermediate 4 can be
Scheme 2 a
Scheme 1
a Reagents and conditions: (a) vinyl zinc bromide, ether, -78
°C to rt; (b) (i) recrystallization from n-hexanes-ethyl acetate (5:
1), (ii) HCl gas, CHCl3, rt; (c) allyl iodide, NaH, THF, 0 °C; (d)
Grubbs’ catalyst, CH2Cl2, rt; (e) (i) H2, cat. 10% Pd-C, MeOH,
rt, (ii) 5 N HCl, MeOH, 60 °C; (iii) 30% NaOH, 0 °C.
prepared by the RCM of diolefin 7, produced by the
stereoselective coupling of 5 with vinyl metals.
N-Allylation of 8 with allyl iodide using NaH as a base
gave the diolefin product 7 in 76%. Finally, 7 was subjected
to RCM in the presence of Grubbs’ catalyst, (benzylidine)-
bis(tricyclohexylphosphine)ruthenium(IV) dichloride, in dichlo-
romethane to provide the desired piperidene 4 in excellent
yield. In addition, the stereochemistry of 4 was unambigu-
ously confirmed by its transformation to the known cis-3-
hydroxy-2-hydroxymethyl piperidine 95p (Scheme 2).
(5) 1-Deoxygalactonojirimycin: (a) Liguchi, T.; Tajiri, K.; Ninomiya,
I.; Naito, T. Tetrahedron 2000, 56, 5819-5833. (b) Mehta, G.; Mohal, N.
Tetrahedron Lett. 2000, 41, 5741-5745. (c) Asano, K.; Hakogi, T.; Iwama,
S.; Katsumura, S. Chem. Commun. 1999, 41-42. (d) Johnson, C. R.;
Golebiowsky, A.; Sundram, H.; Miller, M. W.; Dwaihy, R. L. Tetraherdon
Lett. 1995, 36, 653-654. (e) Uriel, C.; Santoyo-Gonzalez, F. Synlett 1999,
593-595. (f) Ruiz, M.; Ruanova, T. M.; Ojea, V.; Quintela, J. M.
Tetrahedron Lett. 1999, 40, 2021-2024. (g) Shilvock, J. P.; Fleet, G. W.
J. Synlett 1998, 554-556. (h) Chida, N.; Tanikawa, T.; Tobe, T.; Ogawa,
S. J. Chem. Soc., Chem. Commun. 1994, 1247-1248. (i) Aoyagi, S.;
Fujimaki, S.; Yamazaki, N.; Kibayashi, C. J. Org. Chem. 1991, 56, 815-
819. (j) Kajimoto, T.; Chen, L.; Liu, K. K. C.; Wong, C. H. J. Am. Chem.
Soc. 1991, 113, 6678-6680. (k) Bernotas, R. C.; Pezzone, M. A.; Ganem,
B. Carbohydr. Res. 1987, 167, 305-311. 1-Deoxyidonojirimycin: (l) Singh,
O. V.; Han, H. Tetrahedron Lett. 2003, 44, 2387-2391. (m) Schaller, C.;
Vogel, P.; Jager, V. Carbohydr. Res. 1998, 314, 25-35. (n) Fowler, P. A.;
Haines, A. H.; Taylor, R. J. K.; Chrystal, E. J. T.; Gravestock, M. B.
Carbohydr. Res. 1993, 246 377-381. (o) Liu, K. K. C.; Kajimoto, T.; Chen,
L.; Zhong, Z.; Ichikawa, Y.; Wong, C. H. J. Org. Chem. 1991, 56, 6280-
6289. 1-Deoxygulonojirimycin: ref 5l. (p) Haukaas, M. H.; O’Doherty, G.
A. Org. Lett. 2001, 3, 401-404. (q) Ruiz, M.; Ojea, V.; Ruanova, T. M.;
Quintela, J. M. Tetrahedron: Asymmetry 2002, 13, 795-799. (r) Liao, L.-
X.; Wang, Z.-M.; Zhang, H.-X.; Zhou, W.-S. Tetrahedron: Asymmetry
1999, 10, 3649-3657.
(6) (a) Banba, Y.; Abe, C.; Nemoto, H.; Kato, A.; Adachi, I.; Takahata,
H. Tetrahedron: Asymmetry 2001, 12, 817-819. (b) Takahata, H.; Banba,
Y.; Ouchi, H.; Nemoto, H.; Kato, A.; Adachi, I. J. Org. Chem. 2003, 68,
3603-3607.
(7) Dondoni, A.; Perrome, D. Org. Synth. 1999, 77, 64-77.
(8) Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54, 4413-4450.
(9) (a) Garner, P.; Park, J. M.; Malecki, E. J. Org. Chem. 1988, 53,
4395-4398. (b) Herold, P. HelV. Chim. Acta. 1988, 71, 354-363.
(10) (a) Williams, L.; Zhang, Z.: Shao, F.; Carroll, P. J.; Joullie´, M. M.
Tetrahedron 1996, 52, 11673-11694. (b) Coleman, R. S.; Carpenter, A. J.
Tetrahedron Lett. 1992, 33, 1697-1700.
(11) On the other hand, the use of HMPA as an additive in place of
ZnBr2 showed an anti-diastereoselectivity (68% de) in 91% yield.
2528
Org. Lett., Vol. 5, No. 14, 2003