Electron Transfer Processes in Molecular Dyads and Triads
2457 2468
¬
144.4, 144.3, 143.3, 143.1, 142.7, 142.6, 142.5, 142.2, 142.2, 142.1, 142.0, 141.9,
141.7, 141.6, 140.2, 139.9, 136.2, 136.1, 136.0, 135.9, 135.6, 135.5, 135.2, 132.5,
132.3, 132.2, 131.5, 130.8, 130.7, 130.6, 130.5, 129.6, 129.5, 128.8, 126.5, 126.3,
126.0, 125.9, 125.4, 124.9, 124.7, 124.4, 123.2, 122.0, 121.9, 119.4, 119.3, 118.6,
118.3, 117.3, 82.8, 69.8, 68.8, 39.9, 19.1 ppm; FTIR (KBr): nÄ 2927, 1733,
1718, 1701, 1683, 1652, 1602, 1558, 1541, 1508, 1488, 1257, 1176, 1112, 1068,
1014, 800, 704, 526 cmÀ1; UV/Vis (CH2Cl2): lmax (log e) 252 (4.74), 278
(4.72), 330 (4.51), 431 (4.23) nm; MS (MALDI-TOF): m/z (%): 1985 (100)
MartÌn, A. Anton, J. GarÌn, J. Orduna, J. Org. Chem. 2000, 65, 1978
1983.
[11] For a recent review on TTF, see: J. L. Segura, N. MartÌn, Angew.
Chem. 2001, 113, 1416 1455; Angew. Chem. Int. Ed. 2001, 40, 1372
1409.
¬
[12] a) N. MartÌn, L. Sanchez, C. Seoane, E. OrtÌ, P. M. Viruela, R. Viruela,
J. Org. Chem. 1998, 63, 1268 1279; b) M. R. Bryce, A. J. Moore, M.
Hasan, G. J. Ashwell, A. T. Fraser, W. Clegg, A. I. Hursthouse, M. B.
Karaulov, Angew. Chem. 1990, 102, 1493 1495; Angew. Chem. Int.
Ed. Engl. 1990, 29, 1450 1452; c) Y. Yamashita, Y. Kobayashi, T.
Miyashi, Angew. Chem. 1989, 101, 1090 1091; Angew. Chem. Int. Ed.
[M ].
¬
¬
Engl. 1989, 28, 1052 1053; d) N. MartÌn, I. Perez, L. Sanchez, C.
Seoane, J. Org. Chem. 1997, 62, 870 877.
Acknowledgements
¬
¬
[13] a) N. MartÌn, I. Perez, L. Sanchez, C. Seoane, J. Org. Chem. 1997, 62,
5690 5695; b) M. A. Herranz, N. MartÌn, Org. Lett. 1999, 1, 2005
We are indebted to MCYT of Spain (Project BQU2002 00855) and the
Office of Basic Energy Sciences of the U.S. Department of Energy
(contribution No. NDRL-4444 from the Notre Dame Radiation Labora-
tory) for financial support.
¬
2007; c) N. MartÌn, L. Sanchez, D. M. Guldi, Chem. Commun. 2000,
113 114.
[14] a) M. Maggini, G. Scorrano, M. Prato, J. Am. Chem. Soc. 1993, 115,
9798 9799; b) M. Prato, M. Maggini, Acc. Chem. Res. 1998, 31, 519
526.
[15] G. J. Marshallay, M. R. Bryce, J. Org. Chem. 1994, 59, 6847 6849.
¬
[16] R. Gomez, PhD thesis, Universidad Complutense de Madrid (Spain),
[1] a) J. Deisenhofer, O. Epp, K. Miki, R. Huber, H. Michel, J. Mol. Biol.
1984, 180, 385; b) W. Rettig, Angew. Chem. 1986, 98, 969 986; Angew.
Chem. Int. Ed. Engl. 1986, 25, 971 988; c) T. J. Meyer, Acc. Chem.
Res. 1989, 22, 163 170.
2001.
[17] a) Compound 20 was obtained in
a three-step procedure from
commercially available 2-hydroxymethyl-anthraquinone. See: S. Gon-
¬
zalez, N. MartÌn, D. M. Guldi, J. Org. Chem. 2003, 68, 779 791; b) I.
[2] a) J. S. Connolly, J. R. Bolton in Photoinduced Electron Transfer (Eds.:
M. A. Fox, M. Chanon), Elsevier, Amsterdam, 1988, Part D, pp. 303
393; b) M. R. Wasielewski in Photoinduced Electron Transfer (Eds.:
M. A. Fox, M. Chanon), Elsevier, Amsterdam, 1988, Part A, pp. 161
206.
¬
Perez, PhD thesis, Universidad Complutense de Madrid (Spain), 2003.
¬
[18] a) B. Illescas, M. A. MartÌnez-Grau, M. L. Torres, J. Fernandez-
Gadea, N. MartÌn, Tetrahedron Lett. 2002, 43, 4133 4136; b) T. Gu,
C. Bourgogne, J. F. Nierengarten, Tetrahedron Lett. 2001, 42, 7249
¬
7252; c) P. de la Cruz, A. de la Hoz, L. A. Font, F. Langa, M. C. Perez-
[3] a) M. R. Wasielewski, Chem. Rev. 1992, 92, 435 461; b) M. Bixon, J.
Fajer, G. Feher, J. H. Freed, D. Gamliel, A. J. Hoff, H. Levanon, D.
Mˆbius, J. R. Norris, R. Nechushtai, A. Scherz, J. L. Sessler, D. H. A.
Stehlik, Isr. J. Chem. 1992, 32, 369; c) D. Gust, T. A. Moore, A. L.
Moore, Acc. Chem. Res. 1993, 26, 198 205; d) H. Kurreck, M. Huber,
Angew. Chem. 1995, 107, 929 947; Angew. Chem. Int. Ed. Engl. 1995,
34, 849–866; e) D. Gust, T. A. Moore in The Porphyrin Handbook,
Vol. 8 (Eds.: K. M. Kadish, R. Smith, R. Guilard), Academic Press,
San Diego, CA, 2000, pp. 153 190; f) D. Gust, T. A. Moore, A. L.
Moore, Acc. Chem. Res. 2001, 34, 40 48; g) D. M. Guldi, N. MartÌn, J.
Mat. Chem. 2002, 12, 1978 1992.
Rodriguez, Tetrahedron Lett. 1998, 39, 6053 6056.
[19] a) T. Suzuki, Y. Maruyama, T. Akasaba, W. Ando, K. Kobayashi, S.
Nagase, J. Am. Chem. Soc. 1994, 116, 1359 1363; b) L. Echegoyen,
L. E. Echegoyen, Acc. Chem. Res. 1998, 31, 593 601.
[20] The aforementioned redox potentials indicate the absence of signifi-
cant electronic interaction between the electroactive chromophores in
18, 23, 25, and 26.
[21] We would like to point out that the missing data points in Table 2
could not be determined within the 100 ps time-resolution of the
apparatus. The complementary picosecond-resolved transient absorp-
tion measurements infer indeed lifetimes that are either close to or
within the 100 ps apparatus time-resolution.
[4] a) J.-C. Chambron, S. Chardon-Noblat, A. Harriman, V. Heitz, J. P.
Sauvage, Pure Appl. Chem. 1993, 65, 2343; b) A. Harriman, J.-P.
Sauvage, Chem. Soc. Rev. 1996, 26, 41 48; c) M.-J. Blanco, M. C.
[22] G. Kodis, P. A. Liddell, L. de la Garza, A. L. Moore, T. A. Moore, D.
Gust, J. Mater. Chem. 2002, 2100 2108.
¬
Jimenez, J.-C. Chambron, V. Heitz, M. Linke, J.-P. Sauvage, Chem.
[23] D. M. Guldi, M. Prato, Acc. Chem. Res. 2000, 33, 695 703.
Soc. Rev. 1999, 28, 293 306; d) V. Balzani, A. Juris, M. Venturi, S.
Campagna, S. Serroni, Chem. Rev. 1996, 96, 759 834; e) Electron
Transfer in Chemistry (Ed.: V. Balzani), Wiley-VCH, Weinheim, 2001.
[5] a) M. N. Paddon-Row, Acc. Chem. Res. 1994, 27, 18 25; b) J. W.
Verhoeven in Electron Transfer–From Isolated Molecules to Bio-
molecules, Part 1, (Eds.: J. Jortner, M. Bixon), Wiley, New York, 1999,
pp. 603 644; c) K. Maruyama, A. Osuka, Pure Appl. Chem. 1990, 62,
1511; d) K. Maruyama, A. Osuka, N. Mataga, Pure Appl. Chem. 1994,
66, 867; e) A. Osuka, N. Mataga, T. Okada, Pure Appl. Chem. 1997, 69,
796 802; f) L. Sun, L. Hammarstrˆm, B. äkermark, S. Styring, Chem.
Soc. Rev. 2001, 30, 36 49.
¬
[24] D. M. Guldi, L. Sanchez, N. MartÌn, J. Phys. Chem. B 2001, 105, 7139
7144.
[25] The charge-recombination rates are smaller in polar than in nonpolar
solvents. This relationship suggests that the rate constants are in the
normal region of the Marcus parabola (ÀDGCR < l). Considering the
structural changes that the one-electron oxidation of exTTFs causes,
the reorganization energy of the radical pair is assumed to be quite
large. In addition, the ÀDGCR values are insufficiently large as to
surpass the reorganization energy in 4a, 18, and 23 (ÀDGCR ꢀ l),
which would shift the charge-recombination into the inverted region
of the Marcus parabola (ÀDGCR > l).
[6] a) D. M. Guldi, K.-D. Asmus, J. Am. Chem. Soc. 1997, 119, 5744
5745; b) H. Imahori, K. Hagiwara, T. Akiyama, M. Aoki, S. Taniguchi,
T. Okada, M. Shirakawa, Y. Sakata, Chem. Phys. Lett. 1996, 263, 545
550; c) D. M. Guldi, Chem. Soc. Rev. 2002, 31, 22 36.
[26] Interestingly, the lifetime of 23, which is in the range of several
hundred nanoseconds, is virtually comparable to those found in C60
donor dyads with a similar spacer (see reference [6c]).
[27] The reactivity scheme of 4a, 18, and 23–comparing the steady-state
and time-resolved fluorescence experiments–fails to reveal substan-
tial differences. Therefore, only time-resolved fluorescence lifetime
measurements will be discussed for triads 25 and 26. In addition, the
presence of two exTTF moieties imposes notable difficulties on
convoluting the individual contributions in the steady-state emission
experiments.
[28] The intramolecular decay rates in triad 26 do not differ notably from
those of dyad 18.
[29] Additional proof for an intramolecular charge-recombination stems
from a set of experiments, conducted with different laser power and
different dyad concentrations: Decreasing the radical-pair concen-
[7] a) Fullerenes: From Synthesis to Optoelectronic Properties (Eds.:
D. M. Guldi, N. MartÌn), Kluwer, Dordrecht, 2002; b) Fullerenes and
Related Structures, Vol. 199 (Ed.: A. Hirsch), Springer, Berlin, 1999.
¬
¬
[8] a) N. MartÌn, L. Sanchez, B. Illescas, I. Perez, I. Chem. Rev. 1998, 98,
2527 2548; b) H. Imahori, Y. Sakata, Adv. Mater. 1997, 9, 537 546;
c) H. Imahori, Y. Sakata, Eur. J. Org. Chem. 1999, 64, 2445 2457.
[9] a) P. Barbara, T. J. Meyer, M. A. Ratner, J. Phys. Chem. 1996, 100,
13148 13168; b) P. Piotrowiak, Chem. Soc. Rev. 1999, 28, 143 150;
c) C. C. Moser, J. M. Keske, K. Warncke, R. S. Farid, P. L. Dutton,
Nature 1992, 355, 796 802.
¬
[10] a) N. MartÌn, L. Sanchez, M. A. Herranz, D. M. Guldi, J. Phys.
¬
Chem. A. 2000, 104, 4648 4657; b) D. M. Guldi, S. Gonzalez, N.
¹ 2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2467