Inorganic Chemistry
Communication
(b) Moulton, B.; Zaworotko, M. J. Chem. Rev. 2001, 101, 1629.
(c) Hagrman, P. J.; Hagrman, D.; Zubieta, J. Angew. Chem., Int. Ed. 1999,
38, 2638.
isotherm. This may derive from the flexibility of the self-
catenated net, which causes dislocation moves of the framework
upon an increase of the pressure, as found in other soft porous
MOFs.26 The Brunauer−Emmett−Teller surface area of SDU-9
is 332.8 m2 g−1 calculated from these data.
(7) Hill, R. J.; Long, D. L.; Champness, N. R.; Hubberstey, P.;
Schroder, M. Acc. Chem. Res. 2005, 38, 335.
̈
(8) Wells, A. F. Three-dimensional Nets and Polyhedra; Wiley-
In summary, a 3D (123)4(126)3 coordination network with
high topological density and extremely tight self-catenation of
12-rings has been obtained based on [Cu2(COO)4] paddlewheel
SBUs and a tripodal carboxylate linker. The self-catenation is
“strong”; i.e., the network cannot be transformed into an array of
interpenetrating nets by breaking any chemical bond.
Interscience, New York, 1977.
(9) (a) Batten, S. R.; Robson, R. Angew. Chem., Int. Ed. 1998, 37, 1460.
(b) Batten, S. R. CrystEngComm 2001, 3, 67.
(10) Wu, H.; Yang, J.; Su, Z. M.; Batten, S. R.; Ma, J. F. J. Am. Chem. Soc.
2011, 133, 11406.
(11) (a) Carlucci, L.; Ciani, G.; Proserpio, D. M. Coord. Chem. Rev.
2003, 246, 247. (b) Alexandrov, E. V.; Blatov, V. A.; Kochetkov, A. V.;
Proserpio, D. M. CrystEngComm 2011, 13, 3947. (c) Delgado-
Friedrichs, O.; Foster, M. D.; O’Keeffe, M.; Proserpio, D. M.; Treacy,
M. M. J.; Yaghi, O. M. J. Solid State Chem. 2005, 178, 2533. (d) Delgado-
Friedrichs, O.; O’Keeffe, M. Acta Crystallogr., Sect. A 2003, 59, 351.
(12) Ke, X. J.; Li, D. S.; Du, M. Inorg. Chem. Commun. 2011, 14, 788
and references cited therein.
ASSOCIATED CONTENT
* Supporting Information
■
S
X-ray crystallographic data in CIF format, detailed synthetic
procedures, IR and TGA for the compounds, and additional
graphics. This material is available free of charge via the Internet
(13) Eckhardt, R. H.; Heidl, H.; Fischer, R. D. Chem.Eur. J. 2003, 9,
1795.
(14) Sava, D. F.; Rohwer, L.; Rodriguez, E. S.; Nenoff, M. A. J. Am.
Chem. Soc. 2012, 134, 3983.
(15) Schareina, T.; Schick, C.; Abrahams, B. F.; Kempe, Z. R. Anorg.
Allg. Chem. 2001, 627, 1711.
(16) Li, D. S.; Zhang, P.; Zhao, J.; Fang, Z. F.; Du, M.; Zou, K.; Mu, Y.
Q. Cryst. Growth Des. 2012, 12, 1697.
(17) Carlucci, L.; Ciani, G.; Moret, M.; Proserpio, D. M.; Rizzato, S.
Angew. Chem., Int. Ed. 2000, 39, 1506.
(18) Sun, D.; Ma, S.; Ke, Y.; Collins, D. J.; Zhou, H. C. J. Am. Chem. Soc.
2006, 128, 3896.
(19) Zhao, X. L.; Sun, D.; Yuan, S. A.; Feng, S. Y.; Cao, R.; Yuan, D. Q.;
Wang, S. N.; Dou, J. M.; Sun, D. F. Inorg. Chem. 2012, 51, 10350.
(20) Blatov, V. A. Struct. Chem. 2012, 23, 955; see also http://www.
(21) Blatov, V. A.; O’Keeffe, M.; Proserpio, D. M. CrystEngComm
2010, 12, 44.
AUTHOR INFORMATION
■
Corresponding Authors
Funding
This work was supported by the NSFC (Grants 21001115 and
21271117), NCET-11-0309 and the Shandong Natural Science
Fund for Distinguished Young Scholars (JQ201003), and the
Fundamental Research Funds for the Central Universities
(Grants 13CX05010A and 13CX02006A).
Notes
The authors declare no competing financial interest.
REFERENCES
■
(22) Forgan, R. S.; Sauvage, J.-P.; Stoddart, J. F. Chem. Rev. 2011, 111,
5434.
(23) O’Keeffe, M. Z. Kristallogr. 1991, 196, 21.
(1) (a) Zhou, H. C.; Long, J. R.; Yaghi, O. M. Chem. Rev. 2012, 112,
673. (b) Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D.-W. Chem. Rev.
2012, 112, 782. (c) Sumida, K.; Rogow, D. L.; Mason, J. A.; McDonald,
T. M.; Bloch, E. D.; Herm, Z. R.; Bae, T.-H.; Long, J. R. Chem. Rev. 2012,
112, 724. (d) Getman, R. B.; Bae, Y.-S.; Wilmer, C. E.; Snurr, R. Q.
Chem. Rev. 2012, 112, 703.
(24) O’Keeffe, M.; Peskov, M. A.; Ramsden, S. J.; Yaghi, O. M. Acc.
(25) Spek, A. L. J. Appl. Crystallogr. 2003, 36, 7.
(26) (a) Maji, T.; Matsuda, K. R.; Kitagawa, S. Nat. Mater. 2007, 6, 142.
(b) Mulfort, K. L.; Farha, O. K.; Malliakas, C. D.; Kanatzidis, M. G.;
Hupp, J. T. Chem.Eur. J. 2010, 16, 276. (c) Yang, S. H.; Lin, X.; Lewis,
W.; Suyetin, M.; Bichoutskaia, E.; Parker, J. E.; Tang, C. C.; Allan, D. R.;
Rizkallah, P. J.; Hubberstey, P.; Champness, N. R.; Thomas, K. M.;
̈
(2) (a) Farha, O. K.; Ozgur Yazaydın, A.; Eryazici, I.; Malliakas, C. D.;
̈
Hauser, B. G.; Kanatzidis, M. G.; Nguyen, S. T.; Snurr, R. Q.; Hupp, J. T.
Nat. Chem. 2010, 2, 944. (b) Lu, G.; Li, S.; Guo, Z.; Farha, O. K.; Hauser,
B. G.; Qi, X.; Wang, Y.; Wang, X.; Han, S.; Liu, X.; DuChene, J. S.;
Zhang, H.; Zhang, Q.; Chen, X.; Ma, J.; Loo, S. C.; Wei, W. D.; Yang, Y.;
Hupp, J. T.; Huo, F. Nat. Chem. 2012, 4, 310. (c) McKinlay, R. M.; Cave,
G. W. V.; Atwood, J. L. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 5944.
(3) (a) Long, J. R.; Yaghi, O. M. Chem. Soc. Rev. 2009, 38, 1213.
(b) Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur,
Blake, A. J.; Schroder, S. M. Nat. Mater. 2012, 11, 710.
̈
́
P.; Ferey, G.; Morris, R. E.; Serre, C. Chem. Rev. 2012, 112, 1232.
(c) Corma, A.; Garcia, H.; Xamena, F. X. L. Chem. Rev. 2010, 110, 4606.
(d) Cui, Y. J.; Yue, Y. F.; Qian, G. D.; Chen, B. L. Chem. Rev. 2012, 112,
1126. (e) Yoon, M.; Srirambalaji, R.; Kim, K. Chem. Rev. 2012, 112,
1196.
(4) (a) Yaghi, O. M.; O’Keeffe, M.; Ockwig, N. W.; Chae, H. K.;
Eddaoudi, M.; Kim, J. Nature 2003, 423, 705. (b) Muller, U.; Schubert,
̈
M.; Teich, F.; Puetter, H.; Schierle-Arndt, K.; Pastre, J. J. Mater. Chem.
2006, 16, 626. (c) Dinca, M.; Long, J. R. Angew. Chem., Int. Ed. 2008, 47,
6766. (d) Czaja, A. U.; Trukhan, N.; Muller, U. Chem. Soc. Rev. 2009, 38,
̈
1284.
(5) (a) Ma, L.; Abney, C.; Lin, W. Chem. Soc. Rev. 2009, 38, 1248.
(b) Czaja, A. U.; Trukhan, N.; Muller, U. Chem. Soc. Rev. 2009, 38, 1284.
̈
(c) Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. T. Chem.
Soc. Rev. 2009, 38, 1330.
(6) (a) Blake, A. J.; Champness, N. R.; Hubberstey, P.; Li, W. S.;
Withersby, M. A.; Schroder, M. Coord. Chem. Rev. 1999, 183, 117.
̈
10734
dx.doi.org/10.1021/ic4018757 | Inorg. Chem. 2013, 52, 10732−10734