T. Mino et al. / Tetrahedron Letters 44 (2003) 4677–4679
4679
decrease in enantioselectivity (entry 3 versus 4). When
the mixture of atropisomer (S)-3d13 was used as a
ligand instead of (aS,S)-3d, (S)-8 was obtained in good
yield without decrease of the enantioselectivity (entry
6). In this condition, we again carried out a reaction
using the atropisomeric ligand (aR,S)-3d (entry 7). But
the reaction did not occur after 24 h. This was also the
case for ligand 3e (entry 8 versus entry 9). (S)-8 with
good enantioselectivity was obtained only when the
reaction was carried out using (aS,S)-3e (entry 8).
These results mean that enantioselectivity in Pd-cata-
lyzed asymmetric allylic alkylation is not decreased by
using diastereomeric mixtures of ligands 3. When the
reactions were carried out using the diastereomeric
mixture of (S)-3a (entry 10) and (S)-3b (entry 11) at
−10°C, (S)-8 with good enantioselectivity was obtained,
but the reaction rate became slightly slow. In the case
of (aS,S)-3c, product 8 with moderate enantioselectivity
was obtained (entry 12). In order to improve the enan-
tioselectivity, we further examined the effect of reaction
solvents using the ligand (aS,S)-3d. A reaction carried
out in ether improved the enantioselectivity to 95% ee
(entry 16).
H.; Miyano, S. Enantiomer 1997, 2, 203; (b) Mino, T.;
Tanaka, Y.; Sakamoto, M.; Fujita, T. Heterocycles 2000,
53, 1485; (c) Mino, T.; Tanaka, Y.; Akita, K.; Anada, K.;
Sakamoto, M.; Fujita, T. Tetrahedron: Asymmetry 2001,
12, 1677; (d) Kondo, K.; Kazuta, K.; Fujita, H.;
Sakamoto, Y.; Murakami, Y. Tetrahedron 2002, 58, 5209.
5. (a) Mino, T.; Tanaka, Y.; Sakamoto, M.; Fujita, T.
Tetrahedron: Asymmetry 2001, 12, 2435; (b) Mino, T.;
Tanaka, Y.; Akita, K.; Sakamoto, M.; Fujita, T. Hetero-
cycles 2003, 60, 9.
6. For other pyrrolidine-containing aminophosphine lig-
ands, see: (a) Farrell, A.; Goddard, R.; Guiry, P. J. J.
Org. Chem. 2002, 67, 4209; (b) Okuyama, Y.; Nakano,
H.; Hongo, H. Tetrahedron: Asymmetry 2000, 11, 1193;
(c) Suzuki, Y.; Abe, I.; Hiroi, K. Heterocycles 1999, 50,
89; (d) Hiroi, K.; Suzuki, Y.; Abe, I. Tetrahedron: Asym-
metry 1999, 10, 1173; (e) Cahill, J. P.; Cunneen, D.;
Guiry, P. J. Tetrahedron: Asymmetry 1999, 10, 4157.
7. Rate of (aS,S)-3a/(aR,S)-3a was ca. 2.3 determined by
NMR.
8. Rate of (aS,S)-3b/(aR,S)-3b was ca. 2.5 determined by
NMR.
9. Rate of (aS,S)-3c/(aR,S)-3c was ca. 2.0 determined by
NMR.
We successfully obtained chiral diaminophosphine with
stable C(aryl)ꢀN(amine) axial chirality such as that seen
for 3 and demonstrated the Pd-catalyzed asymmetric
allylic alkylation of 1,3-diphenyl-2-propenyl acetate (6)
with dimethyl malonate (7) using it with high enan-
tiomeric excess. Further studies on optimization of the
ligand and application to other asymmetric reactions
are underway in our group.
10. (aS,S)-3d (less polar): 41%; mp 112–113°C; [h]2D5=41.7°
1
(c 0.10, CHCl3): H NMR (CDCl3) l: 1.56–1.71 (m, 7H),
2.03–2.13 (m, 1H), 2.16–2.36 (m, 6H), 2.53–2.62 (m, 1H),
2.78 (dd, J=7.6 and 15.4 Hz, 1H), 3.66-3.75 (m, 1H),
3.79 (s, 3H), 6.40–6.43 (m, 1H), 6.40 (ddd, J=1.3, 2.8,
and 7.6 Hz, 1H), 6.86 (dd, J=0.6 and 8.0 Hz, 1H), 7.05
(ddd, J=0.8, 7.9, and 8.7 Hz, 1H), 7.25–7.35 (m, 10H);
13C NMR (CDCl3) l: 23.4, 24.2, 29.7, 31.5, 48.52, 51.9,
54.7, 55.0, 61.1, 61.7 (d, Jcp=3.3 Hz), 112.4, 124.9, 126.3,
128.1–128.2 (m), 134.0, 134.1, 134.3, 134.4, 138.7 (d,
Jcp=13.2 Hz), 139.2 (d, Jcp=14.6 Hz), 140.5, 142.7 (d,
Jcp=4.1 Hz), 158.3 (d, Jcp=3.6 Hz); 31P NMR (CDCl3)
l: −15.05; FAB-MS m/z (rel intensity): 445 (M++1, 100);
HRMS (FAB-MS) m/z calcd for C28H34N2OP+H
445.2409, found 445.2382. (aR,S)-3d (more polar): 29%;
mp 150–151°C; [h]D25=11.1° (c 0.10, CHCl3): 1H NMR
(CDCl3) l: 1.08–1.18 (m, 1H), 1.34–1.44 (m, 2H), 1.51–
1.55 (m, 1H), 1.56–1.65 (m, 4H), 1.89 (d, J=11.5 Hz,
1H), 2.19–2.31 (m, 4H), 2.68–2.76 (m 2H), 2.98–30.7 (m,
2H), 3.77 (s, 3H), 6.22 (ddd, J=1.2, 2.7, and 7.6 Hz, 1H),
6.85 (d, J=8.1 Hz, 1H), 7.03 (ddd, J=1.2, 7.6, and 8.1
Hz, 1H), 7.21–7.34 (m, 10H); 13C NMR (CDCl3) l: 23.0,
24.9, 30.5, 50.2, 51.3, 55.0, 55.1, 61.4, 122.4, 124.3, 124.3,
126.8, 128.1–128.3 (m), 133.8, 134.0, 134.1, 134.3, 138.9
(d, Jcp=9.7 Hz), 139.1 (d, Jcp=10.5 Hz), 140.9 (d, Jcp=
2.8 Hz), 142.4 (d, Jcp=18.6 Hz), 159.0 (d, Jcp=2.6 Hz);
31P NMR (CDCl3) l: −13.45; FAB-MS m/z (rel inten-
sity): 445 (M++1, 100); HRMS (FAB-MS) m/z calcd for
C28H34N2OP+H 445.2409, found 445.2369.
Acknowledgements
This work was partially supported by Saneyoshi Schol-
arship Foundation.
References
1. (a) Tsuji, J.; Minami, I. Acc. Chem. Res. 1987, 20, 140;
(b) Trost, B. M.; Verhoeven, T. R. In Comprehensive
Organometallic Chemistry; Wilkinson, G.; Stone, F. G.
A.; Abel, E. W., Eds.; Pergamon: Oxford, 1982; Vol. 8, p.
799; (c) Trost, B. M. Acc. Chem. Res. 1980, 13, 385.
2. (a) Trost, B. M. Chem. Pharm. Bull. 2002, 50, 1; (b)
Trost, B. M.; Lee, C. In Catalytic Asymmetric Synthesis,
2nd ed.; Ojima, I., Ed.; VCH Publishers: New York,
2000; p. 893; (c) Helmchen, G. J. Organomet. Chem.
1999, 576, 203; (d) Pfaltz, A.; Lautens, M. In Comprehen-
sive Asymmetric Catalysis; Jacobsen, E. N.; Pfaltz, A.;
Yamamoto, H., Eds.; Springer: Tokyo, 1999; Vol. 2, p.
833 and references cited therein.
11. Rate of (aS,S)-3e/(aR,S)-3e was ca. 1.8 determined by
NMR.
12. (a) Mino, T.; Imiya, W.; Yamashita, M. Synlett 1997,
583; (b) Mino, T.; Shiotsuki, M.; Yamamoto, N.; Sue-
naga, T.; Sakamoto, M.; Fujita, T.; Yamashita, M. J.
Org. Chem. 2001, 66, 1795.
13. Rate of (aS,S)-3d/(aR,S)-3d was ca. 1.4 determined by
NMR.
3. (a) Dawson, J. G.; Frost, C. G.; Williams, J. M. J.;
Coote, S. J. Tetrahedron Lett. 1993, 34, 3149; (b) Von
Matt, P.; Pfaltz, A. Angew. Chem., Int. Ed. Engl. 1993,
32, 566; (c) Sprinz, J.; Helmchen, G. Tetrahedron Lett.
1993, 34, 1769.
4. (a) Hattori, T.; Komuro, Y.; Hashizaka, N.; Takahashi,