Page 9 of 10
ACS Medicinal Chemistry Letters
(1) Ehringer, H., and Hornykiewicz, O. (1998) Distribution of
Defining Structure-Functional Selectivity Relationships (SFSR) for a
Class of Non-Catechol Dopamine D1 Receptor Agonists, J. Med.
Chem. 62, 3753–3772.
(22) Martini, M. L., Ray, C., Yu, X., Liu, J., Pogorelov, V. M.,
Wetsel, W. C., Huang, X. P., McCorvy, J. D., Caron, M. G., and Jin,
J. (2019) Designing Functionally Selective Noncatechol Dopamine
D1 Receptor Agonists with Potent In Vivo Antiparkinsonian Activity,
ACS Chem. Neurosci. 10, 4160–4182.
noradrenaline and dopamine (3-hydroxytyramine) in the human brain
and their behavior in diseases of the extrapyramidal system,
Parkinsonism Relat. Disord. 4, 53–57.
(2) Cavalli, A., Bolognesi, M. L., Minarini, A., Rosini, M.,
Tumiatti, V., Recanatini, M., and Melchiorre, C. (2008) Multi-target-
directed ligands to combat neurodegenerative diseases, J. Med. Chem.
51, 347–372.
1
2
3
4
5
6
7
8
9
(3) Zhang, A., Neumeyer, J. L., and Baldessarini, R. J. (2007)
Recent progress in development of dopamine receptor subtype-
selective agents- potential therapeutics for neurological and
psychiatric disorders, Chem. Rev. 107, 274–302.
(4) Kebabian, J. W., and Calne, D. B. (1979) Multiple receptors
for dopamine, Nature 277, 93–96.
(5) Seeman, P., and Van Tol, H. H. (1994) Dopamine receptor
pharmacology, Trends Pharmacol. Sci. 15, 264–270.
(6) Delfino, M. A., Stefano, A. V., Ferrario, J. E., Taravini, I. R.,
Murer, M. G., and Gershanik, O. S. (2004) Behavioral sensitization to
different dopamine agonists in a parkinsonian rodent model of drug-
induced dyskinesias, Behav. Brain. Res. 152, 297–306.
(7) Shen, W. W. (1999) A history of antipsychotic drug
development, Compr. Psychiat 40, 407–414.
(8) Beaulieu, J. M., and Gainetdinov, R. R. (2011) The
physiology, signaling, and pharmacology of dopamine receptors,
Pharmacol. Rev. 63, 182–217.
(9) Huot, P., Johnston, T. H., Koprich, J. B., Fox, S. H., and
Brotchie, J. M. (2013) The pharmacology of L-DOPA-induced
dyskinesia in Parkinson's disease, Pharmacol. Rev. 65, 171–222.
(10) Urs, N. M., Bido, S., Peterson, S. M., Daigle, T. L., Bass, C.
E., Gainetdinov, R. R., Bezard, E., and Caron, M. G. (2015) Targeting
β-arrestin2 in the treatment of L-DOPA-induced dyskinesia in
Parkinson's disease, Proc. Natl. Acad. Sci. U.S.A. 112, E2517–2526.
(11) Santini, E., Valjent, E., Usiello, A., Carta, M., Borgkvist, A.,
Girault, J. A., Herve, D., Greengard, P., and Fisone, G. (2007) Critical
involvement of cAMP/DARPP-32 and extracellular signal-regulated
protein kinase signaling in L-DOPA-induced dyskinesia, J. Neurosci.
27, 6995–7005.
(12) McCorvy, J. D., Butler, K. V., Kelly, B., Rechsteiner, K.,
Karpiak, J., Betz, R. M., Kormos, B. L., Shoichet, B. K., Dror, R. O.,
Jin, J., and Roth, B. L. (2018) Structure-inspired design of β-arrestin-
biased ligands for aminergic GPCRs, Nat. Chem. Biol. 14, 126-134.
(13) Urs, N. M., Daigle, T. L., and Caron, M. G. (2011) A
dopamine D1 receptor-dependent β-arrestin signaling complex
potentially regulates morphine-induced psychomotor activation but
not reward in mice, Neuropsychopharmacology 36, 551-558.
(14) Urban, J. D., Clarke, W. P., von Zastrow, M., Nichols, D. E.,
Kobilka, B., Weinstein, H., Javitch, J. A., Roth, B. L., Christopoulos,
A., Sexton, P. M., Miller, K. J., Spedding, M., and Mailman, R. B.
(2007) Functional selectivity and classical concepts of quantitative
pharmacology, J. Pharmacol. Exp. Ther. 320, 1-13.
(15) Mailman, R. B. (2007) GPCR functional selectivity has
therapeutic impact, Trends Pharmacol. Sci. 28, 390–396.
(16) Hodavance, S. Y., Gareri, C., Torok, R. D., and Rockman, H.
A. (2016) G Protein-coupled receptor biased agonism, J. Cardiovasc.
Pharmacol. 67, 193–202.
(17) Kenakin, T., and Christopoulos, A. (2012) Signalling bias in
new drug discovery: detection, quantification and therapeutic impact,
Nat. Rev. Drug Discov. 12, 205.
(18) Lefkowitz, R. J., and Shenoy, S. K. (2005) Transduction of
receptor signals by β-arrestins, Science 308, 512–517.
(19) Conroy, J. L., Free, R. B., and Sibley, D. R. (2015)
Identification of G protein-biased agonists that fail to recruit β-
arrestin or promote internalization of the D1 dopamine receptor, ACS
Chem. Neurosci. 6, 681–692.
(23) Allen, J. A., Yost, J. M., Setola, V., Chen, X., Sassano, M. F.,
Chen, M., Peterson, S., Yadav, P. N., Huang, X.-p., Feng, B., Jensen,
N. H., Che, X., Bai, X., Frye, S. V., Wetsel, W. C., Caron, M. G.,
Javitch, J. A., Roth, B. L., and Jin, J. (2011) Discovery of β-arrestin–
biased dopamine D2 ligands for probing signal transduction pathways
essential for antipsychotic efficacy, Proc. Natl. Acad. Sci. U.S.A. 108,
18488–18493.
(24) Muguet, D., Broussolle, E., and Chazot, G. (1995)
Apomorphine in patients with Parkinson's disease, Biomed.
Pharmacother. 49, 197–209.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(25) Subramony, J. A. (2006) Apomorphine in dopaminergic
therapy, Mol. Pharm. 3, 380–385.
(26) Zhang, A., Zhang, Y., Branfman, A. R., Baldessarini, R. J.,
and Neumeyer, J. L. (2007) Advances in development of
dopaminergic aporphinoids, J. Med. Chem. 50, 171–181.
(27) Raminelli, C., Muraca, A., Perecim, G., and Rodrigues, A.
(2017) Convergent Total Synthesis of (±)-Apomorphine via Benzyne
Chemistry: Insights into the Mechanisms Involved in the Key Step,
Synthesis 49, 3546–3557.
(28) Schoenfeld, R. I., Neumeyer, J. L., Dafeldecker, W., and
Roffler-Tarlov, S. (1975) Comparison of structural and stereoisomers
of apomorphine on stereotyped sniffing behavior of the rat, Eur. J.
Pharmacol. 30, 63–68.
(29) Seeman, P., Watanabe, M., Grigoriadis, D., Tedesco, J. L.,
George, S. R., Svensson, U., Nilsson, J. L., and Neumeyer, J. L.
(1985) Dopamine D2 receptor binding sites for agonists. A tetrahedral
model, Mol. Pharmacol. 28, 391.
(30) Neumeyer, J. L., Reischig, D., Arana, G. W., Campbell, A.,
Baldessarini, R. J., Kula, N. S., and Watling, K. J. (1983) Aporphines.
48.
Enantioselectivity
of
(R)-(-)-
and
(S)-(+)-N-n-
propylnorapomorphine on dopamine receptors, J. Med. Chem. 26,
516–521.
(31) Goldman, M. E., and Kebabian, J. W. (1984) Aporphine
enantiomers - interactions with D-1 and D-2 dopamine receptors, Mol.
Pharmacol. 25, 18–23.
(32) Shi, X.-X., Ni, F., Shang, H.-X., Yan, M.-L., and Su, J.-Q.
(2006) Racemization of (S)-(+)-10,11-dimethoxyaporphine and (S)-
(+)-aporphine: efficient preparations of (R)-(−)-apomorphine and (R)-
(−)-aporphine via a recycle process of resolution, Tetrahedron: Asym.
17, 2210–2215.
(33) Kenakin, T., Watson, C., Muniz-Medina, V., Christopoulos,
A., and Novick, S. (2012) A Simple Method for Quantifying
Functional Selectivity and Agonist Bias, ACS Chem. Neurosci. 3,
193–203.
(34) Ernst, A. M. (1965) Relation between the action of dopamine
and apomorphine and their O-methylated derivatives upon the CNS,
Psychopharmacologia 7, 391–399.
(35) Campbell, A., Baldessarini, R. J., Ram, V. J., and Neumeyer,
J. L. (1982) Behavioral effects of (-)10,11-methylenedioxy-N-n-
propylnoraporphine, an orally effective long-acting agent active at
central dopamine receptors, and analogous aporphines,
Neuropharmacology 21, 953-961.
(36) Borgman, R. J., Baldessarini, R. J., and Walton, K. G. (1976)
Diester derivatives as apomorphine prodrugs J. Med. Chem. 19, 717–
719.
(37) Borkar, N., Li, B., Holm, R., Hakansson, A. E., Mullertz, A.,
Yang, M., and Mu, H. (2015) Lipophilic prodrugs of apomorphine I:
Preparation, characterisation, and in vitro enzymatic hydrolysis in
biorelevant media, Eur. J. Pharm. Biopharm. 89, 216–223.
(38) Gao, Y. G., Ram, V. J., Campbell, A., Kula, N. S.,
Baldessarini, R. J., and Neumeyer, J. L. (1990) Synthesis and
structural requirements of N-substituted norapomorphines for affinity
(20) Gray, D. L., Allen, J. A., Mente, S., O’Connor, R. E.,
DeMarco, G. J., Efremov, I., Tierney, P., Volfson, D., Davoren, J.,
Guilmette, E., Salafia, M., Kozak, R., and Ehlers, M. D. (2018)
Impaired β-arrestin recruitment and reduced desensitization by non-
catechol agonists of the D1 dopamine receptor, Nat. Commun. 9, 674.
(21) Martini, M. L., Liu, J., Ray, C., Yu, X., Huang, X. P., Urs, A.,
Urs, N., McCorvy, J. D., Caron, M. G., Roth, B. L., and Jin, J. (2019)
ACS Paragon Plus Environment